Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**End Semester Examination, May 2023** 

Course: Radiation Safety
Program: B.Sc. (Hons) Physics, Integrated B.Sc. & M.Sc.

Course Code: PHYS 2019

Semester: IV
Time: 03 hrs.
Max. Marks: 100

## SECTION A (5Qx4M=20Marks)

Attempt All Questions. Each Question will carry 4 Marks

| S. No. |                                                                                                                                                                                                  | Marks | CO  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q1     | Classify different Laser Sources based on active medium with examples.                                                                                                                           | 4     | CO1 |
| Q2     | The activity of a 2 milligram sample of <sup>144</sup> Ce is found to be 37 k Bq. Determine its specific activity in Ci/gm.                                                                      | 4     | CO1 |
| Q3     | Describe the basic principle of ALARA.                                                                                                                                                           | 4     | CO2 |
| Q4     | Explain the origin of Cerenkov radiations.                                                                                                                                                       | 4     | CO2 |
| Q5     | In an ancient burial cave, A team of archaeologists discovers ancient wood furniture. Only 80% of the original 14C remains in the wood. How old is the furniture? Half life of C-14 is 5700 yrs. | 4     | CO3 |

## **SECTION B**

(4Qx10M= 40 Marks)

Each question will carry 10 marks  $(10 \times 4 = 40 \text{ Marks})$ 

There is an internal choice for Q9.

| Q6 | Describe the principle and functioning of a thermo luminescent detector    | 10 | CO2 |
|----|----------------------------------------------------------------------------|----|-----|
|    | (TLD).                                                                     |    |     |
| Q7 | Briefly describe the different mechanism to obtain population inversion in | 10 | CO1 |
|    | laser systems.                                                             | 10 |     |
| Q8 | Write short notes on                                                       |    | CO3 |
|    | a) Dose                                                                    |    |     |
|    | b) Exposure                                                                | 10 |     |
|    | Obtain an expression between Dose rate and Exposure rate                   |    |     |
| Q9 | Define stopping power and obtain classical expression for stopping         | 10 | CO2 |
|    | power of charge particles in matter.                                       |    |     |
|    |                                                                            |    |     |
|    | OR                                                                         |    |     |
|    |                                                                            | 10 |     |

|     | Describe LD 50/60, doubling dose and radiation toxicity with respect to radiation protection principles.                                                                                                                                           |          |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| 1.  | SECTION-C (2Qx20M=40 Marks) Each Question carries 20 Marks.                                                                                                                                                                                        |          |     |
| 2.  | Attempt two questions. There is an internal choice for Q11.                                                                                                                                                                                        |          |     |
| Q10 | <ul> <li>a) Explain the principle, construction and working of a Gas filed detector.</li> <li>b) Compute the thickness of Al and Pb to transmit 10% of a narrow beam of 0.1-MeV gamma radiation. Given: attenuation coefficient at this</li> </ul> | 10       | CO2 |
| Q11 | energy for Al is $\mu = 0.435 \text{ cm}^{-1}$ and for Pb it is $\mu = 59.7 \text{ cm}^{-1}$ .  a) Explain the phenomena of Compton scattering and hence obtain                                                                                    | 10<br>15 | CO3 |
| QII | expression for fraction of energy lost by the photon in this scattering.                                                                                                                                                                           | 10       |     |
|     | b) Monochromatic 0.1-MeV gamma rays are scattered through an angle of 120° by a carbon block. Evaluate the kinetic energy of the Compton electron.  OR                                                                                             | 05       |     |
|     | a) Explain the different categories based on energy and the interaction mechanism of neutrons with matter.                                                                                                                                         |          | CO3 |
|     | b) Show that the maximum energy a neutron of mass M and energy E <sub>n</sub> can transfer in a single head on elastic collision to a nuclei of mass m                                                                                             | 10       |     |
|     | is $Q = \frac{4mME_n}{(m+M)^2}$ .                                                                                                                                                                                                                  | 10       |     |
|     |                                                                                                                                                                                                                                                    |          |     |
|     |                                                                                                                                                                                                                                                    |          |     |
|     |                                                                                                                                                                                                                                                    |          |     |