Name: Enrolment No:			
Course: Real Analysis II Semester: IV Program: B.Sc. (H) Mathematics \& Int. B.Sc. M.Sc. Mathematics Time 003 Course Code: MATH 2051 Max. Marks: 100 Instructions: Read all the below mentioned instructions carefully and follow them strictly: 1) Mention Roll No. at the top of the question paper. 2) Attempt all the parts of a question at one place only.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Compute by Riemann integration $\int_{-1}^{1} f(x) d x$, where $f(x)=\|x\|$.	4	CO1
Q 2	Determine the interval of convergence of the power series $\sum\left\{(1 / n)(-1)^{n+1}(x-1)^{n}\right\}$.	4	CO3
Q 3	Give an example to show that the limit of differentials is not equal to the differential of limit.	4	CO2
Q 4	Find the interval of absolute convergence for the series $\sum_{n=1}^{\infty} x^{n} / n^{n}$.	4	$\mathrm{CO3}$
Q 5	Prove that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=n x e^{-n x^{2}}, x \geq 0$ is not uniformly convergent on $[0, k], k>0$.	4	CO2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Prove with the help of an example that the equation $\int_{a}^{b} f^{\prime}(x) d x=$ $f(b)-f(a)$, is not always valid.	10	CO1
Q 7	Show that $\frac{1}{2}\left(\tan ^{-1} x\right)^{2}=\frac{x^{2}}{2}-\frac{x^{4}}{4}\left(1+\frac{1}{3}\right)+\frac{x^{6}}{6}\left(1+\frac{1}{3}+\frac{1}{5}\right)+\ldots,-1 \leq$ $x \leq 1$.	10	$\mathrm{CO3}$
Q 8	Prove that the series obtained by integrating and differentiating power series term by term has the same radius of convergence as the original series.	10	$\mathrm{CO2}$

Q 9	Find the radius of convergence of the series $1+\frac{a \cdot b}{1 . c}+\frac{a(a+1) b(b+1)}{1.2 c(c+1)}+\cdots$. OR Find the radius of convergence of the series $1+x+2!x^{2}+3!x^{3}+4!x^{4}+\cdots$	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	i) If a function f is continuous on $[a, b]$, then there exists a number ξ in $[a, b]$ such that $\int_{a}^{b} f d x=f(\xi)(b-a)$. ii) Prove that every continuous function is integrable.	20	CO1
Q 11	i) State and prove Weierstrass's M test for uniform convergence. ii) Show that the sequence $\left\langle f_{n}(x)\right\rangle$, where $f_{n}(x)=\frac{\log \left(1+n^{3} x^{2}\right)}{n^{2}}$ is uniformly convergent on $[0,1]$. OR i) Test for uniform convergence, the series, $\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}+\cdots, \quad-\frac{1}{2} \leq x \frac{1}{2}$ ii) If $\left\langle f_{n}\right\rangle$ is a sequence of continuous functions on an interval $[a, b]$ and if $f_{n} \rightarrow f$ uniformly on $[a, b]$, then f is continuous on $[a, b]$.	20	CO2

