Name: Enrolment No:			
Cours Progr Cours Instru 1. Sect 2. Sect 3. Sect	UPES End Semester Examination, May 2023 Function of several variables and Partial differential equations : B. Sc.(H)/Int. B.Sc-M.Sc. Mathematics Code: MATH 2050 ions: A has 5 questions. All questions are compulsory. B has 4 questions. All questions are compulsory. Question 8 has interna C has 2 questions. All questions are compulsory. Question 11 has intern	mester: me : ax. Mar oice to hoice to	anyone anyon
	$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$		
S. No.		Marks	CO
Q 1	Define partial derivatives for a function of two variables. Give an example of a function which is not continuous, but all its partial derivatives exist.	4	CO1
Q 2	Solve the PDE: $\left(D^{3}-3 D^{2} D^{\prime}+4 D^{\prime 3}\right) u=0$.	4	CO2
Q 3	Determine the region in which the given equation is hyperbolic, parabolic, or elliptic. $\mathrm{U}_{\mathrm{xx}}+\mathrm{y}^{2} \mathrm{U}_{\mathrm{yy}}=\mathrm{y}$	4	CO3
Q 4	Determine if the given PDE is reducible or irreducible with justification. $\left(D^{2}-D^{\prime 2}+D-D^{\prime}\right) u=0$	4	CO3
Q 5	Find general integral of the PDE. $\frac{y^{2} z}{x} p+x z q=y^{2}$	4	CO2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Find local maxima, local minima and saddle point of the function. $f(x, y)=3 x^{2}+6 x y+7 y^{2}-2 x+4 y$	10	CO1
Q 7	Solve the following PDE $\left(D^{2}-4 D D^{\prime}+4 D^{\prime 2}\right) u=e^{2 x+y}$	10	CO2

Q 8	Reduce the equation to canonical form $(\mathrm{n}-1)^{2} u_{x x}-y^{2 n} u_{y y}=n y^{2 n-1} u_{y}$ OR Find complete integral of the PDE: $\left(D^{2}-D D^{\prime}-2 D\right) u=\sin (3 x+4 y)$	10	$\mathrm{CO3}$
Q 9	Obtain the solution of the wave equation $u_{t t}=5 u_{x x}$ under the following conditions: (i) $u(0, t)=u(2, t)=0$ (ii) $u(x, 0)=\sin \left(\frac{3 \pi x}{2}\right)$ (iii) $u_{t}(x, 0)=0$	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Obtain the complete integral of the given PDE $\left(D^{2}-D D^{\prime}+D^{\prime}-1\right) u=\cos (x+2 y)+e^{x+y}+x y$	20	CO 3
Q11	Discuss all possible solutions of Laplacian equations using variable separable method. $U_{x x}+U_{y y}=0$ OR A bar of 100 cm long, with insulated sides, has its ends kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.	20	CO4

