Name:

Enrolment No:

	UPES End Somester Experimetion May 2022			
Course	End Semester Examination, May 2023 Function of several variables and Partial differential equations	Semester: IV		
-		Time : 03 hrs.		
0	Course Code: MATH 2050		Max. Marks: 100	
000150				
2. Section	on A has 5 questions. All questions are compulsory. on B has 4 questions. All questions are compulsory. Question 8 has interna		1 .	
3. Section	on C has 2 questions. All questions are compulsory. Question 11 has interr	al choice to att	empt anyone.	
SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Define partial derivatives for a function of two variables. Give an example of a function which is not continuous, but all its partial derivatives exist.	4	CO1	
Q 2	Solve the PDE: $(D^3 - 3D^2D' + 4D'^3)u = 0.$	4	CO2	
Q 3	Determine the region in which the given equation is hyperbolic, parabolic, or elliptic. $U_{xx} + y^2 U_{yy} = y.$	4	CO3	
Q 4	Determine if the given PDE is reducible or irreducible with justification. $(D^2 - D'^2 + D - D')u = 0$	4	CO3	
Q 5	Find general integral of the PDE. $\frac{y^2 z}{x} p + xzq = y^2.$	4	CO2	
	SECTION B		1	
	(4Qx10M= 40 Marks)		1	
Q 6	Find local maxima, local minima and saddle point of the function. $f(x, y) = 3 x^{2} + 6 x y + 7 y^{2} - 2 x + 4 y$	10	CO1	
Q 7	Solve the following PDE $(D^2 - 4 D D' + 4 D'^2)u = e^{2x+y}$	10	CO2	

Q 8	Reduce the equation to canonical form $(n-1)^2 u_{xx} - y^{2n} u_{yy} = ny^{2n-1} u_y$		
	OR	10	CO3
	Find complete integral of the PDE:		
	$(D^2 - DD' - 2D)u = \sin(3x + 4y)$		
Q 9	Obtain the solution of the wave equation $u_{tt} = 5 u_{xx}$		
	under the following conditions: (i) $u(0,t) = u(2,t) = 0$		
	(i) $u(0, t) = u(2, t) = 0$ (ii) $u(x, 0) = sin(\frac{3\pi x}{2})$	10	CO4
	(ii) $u(x, 0) = stn(\frac{1}{2})$ (iii) $u_t(x, 0) = 0$		
	$(III) u_t(x,0) = 0$		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Obtain the complete integral of the given PDE		
	$(D^2 - DD' + D' - 1)u = \cos(x + 2y) + e^{x+y} + xy$	20	CO3
Q11	Discuss all possible solutions of Laplacian equations using variable		
	separable method. $U = U = 0$		
	$U_{xx} + U_{yy} = 0$		
	OR	20	CO4
	A bar of 100cm long, with insulated sides, has its ends kept at $0^{\circ}C$ and		
	$100^{\circ}C$ until steady state conditions prevail. The two ends are then		
	suddenly insulated and kept so. Find the temperature distribution.		