Name: Enrolment No:			
Instructions: Write your Roll No. on the top immediately on receipt of this question paper. There shall be three Sections (Section A, Section B and Section C) in the Question Paper \& TWO pages. Section A contains 5 Questions of 4 marks each. All are compulsory. Section B- This section shall have 4 Questions of 10 marks each, Q9 has internal choice. Section C shall have 2 Questions of 20 marks each, Q11 has internal choice.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is square planar, while $\mathrm{CuCI}_{4}{ }^{2-}$ is tetrahedral. Give reason. b) Why do transition metals acts as a good catalysts ?	4	$\begin{aligned} & \hline \mathrm{CO1} \\ & \mathrm{CO} \end{aligned}$
Q2	Calculate in kJmol^{-1}, the crystal field stabilization energy (CFSE) attained by Fe^{2+} ion in an octahedral oxide ion environment. Given, Δ_{o}, for Fe^{2+} in oxide ion environment is $124 \mathrm{kJmol}^{-1}$. What will be the value of CFSE in a tetrahedral environment of oxide ion.	4	$\mathrm{CO1}$
Q3	Given below are the Latimer diagram for Cr in acidic medium: $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \xrightarrow{1.33} \mathrm{Cr}^{3+} \xrightarrow{-0.41} \mathrm{Cr}^{2+} \xrightarrow{-0.91} \mathrm{Cr}$ Answer the following questions: a) Write the half reaction for the conversion, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Cr}^{3+}$ b) Is there any tendency of Cr^{2+} reduce to Cr ? Give reasons. c) Calculate the skip step emf for $\mathrm{Cr}^{3+} \longrightarrow \mathrm{Cr}$ change.	4	$\mathrm{CO2}$
Q4	What is lanthanoid contraction? What are the major consequences of lanthanoid contraction?	4	$\mathrm{CO3}$
Q5	${ }_{92}^{235} \mathrm{U}+\mathbf{A} \longrightarrow{ }_{92}^{236} \mathrm{U}+\mathbf{A} \longrightarrow \mathbf{B} \underset{t_{1 / 2}}{\frac{\beta}{6.7 \text { days }}} \mathbf{C}$ Find \mathbf{A}, \mathbf{B} and \mathbf{C} from the above reaction.	4	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	Explain the MO (molecular orbital) diagram for a complex of tetrahedral symmetry. Draw the correct structures of cis- $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ and trans- $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$	10	$\mathrm{CO1}$

Q7	Discuss trends in stability of oxidation states and magnetic properties of transition elements.	10	CO2
Q8	Describe ion exchange method for the separation and purification of the lanthanides.	10	$\mathrm{CO3}$
Q9	Write the actinides in series with their atomic number, element correct name or symbol. Describe preparation of the actinides: a) Through nuclear fission of ${ }_{92}^{235} \mathrm{U}$ to Np isotopes and Pu isotopes. b) Isotopes of element Pu by succession of (n, γ) reactions. or Illustrate occurrence, extraction and uses of Uranium (U) and Thorium (Th) elements of actinide series.	10	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q10	a) Based on the VBT explain the geometry and magnetic property of a complex $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$. b) From the following Latimer diagram, calculate the value of E° for the reaction: $2 \mathrm{HO}_{2}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$. $\mathrm{O}_{2} \xrightarrow{-0.125} \mathrm{HO}_{2} \xrightarrow{+1.510} \mathrm{H}_{2} \mathrm{O}_{2}$ Comment on the thermodynamic tendency of HO 2 to undergo disproportionation.	20	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$
Q11	a) Compare the general properties of actinides with lanthanides. b) How protactinium (Pa) is extracted and discuss $(+\mathrm{IV})$ and $(+\mathrm{V})$ oxidation states compound of Pa . or a) Illustrate chemical properties of Uranium (U) and discuss in brief about hydrides, oxides and halides of U . b) Discuss about occurrence, extraction and stable oxidation states of Neptunium (Np), Plutonium (Pu) and Americium (Am).	20	$\mathrm{CO3}$

