| Name:
 Enrolment No: |
| :--- | :--- | :--- | :--- | :--- |
| Course: Fluid Mechanics and Fluid Machines |
| Program:B.Tech (Mechanical Engineering)
 Course Code: MECH 2026 |
| Instructions: |

$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	a) Define streamlines, streaklines and pathlines. b) Consider the velocity field of a flow given by $u=y /\left(x^{2}+y^{2}\right)$ and $v=-x /\left(x^{2}+y^{2}\right)$. Calculate the equation of the streamline passing through the point $(0,5)$. [3+7 marks]	10	CO1
Q 7	a) What are the different sources of energy losses in a pipe flow? [3 marks] b) Water is flowing through a horizontal circular pipe. You are required to calculate the loss of energy head between the two points A and B, as shown in figure. Given: Pressure at points A and B are 12 kPa and 10 kPa , respectively. The diameter of the pipe at sections A and B are 4 cm and 5 cm , respectively. The flow rate through the pipe is 0.5 $\mathrm{m}^{3} /$ minute. [7 marks]	10	CO 3
Q 8	Define displacement thickness and momentum thickness for a boundary layer flow. Find the displacement thickness and momentum thickness for the flow over a horizontal flat plate. The velocity distribution in the boundary layer is given by $\frac{u}{u}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$, where δ is the thickness of the boundary layer. OR a) The drag coefficient of a car running at $80 \mathrm{~km} / \mathrm{h}$ is to be determined experimentally in a large wind tunnel in a full-scale test. The frontal area of the car is $3 \mathrm{~m}^{2}$. If the force acting on the car in the flow direction is measured to be 200 N , determine the value of drag coefficient for this car. Density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$. b) If the same care is to be tested using a small-scale model (scale $=$ $1: 2$), find out the wind speed at which the car should be tested in the wind tunnel. [4 + 6 marks]	10	CO 2

Q 9	Define the followings and write the major differences between them: a) Turbines and Pumps b) Impulse and Reaction turbines c) Radial and axial flow turbines d) Francis and Pelton turbines	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$			
Q10	a) Using potential flow theory for an inviscid and incompressible flow, derive the equations for stream function, and velocity field for the non-lifting flow over a circular cylinder and obtain the coordinates of the stagnation points. b) Comments on lift and drag forces acting on the cylinder for the inviscid, incompressible flow and compare these with the forces acting on the cylinder in a real flow (viscid flow). $[15+5 \text { marks }]$ OR a) For a two-dimensional flow, the velocity components are given as $u=2 x y$ and $v=a^{2}+x^{2}-y^{2}$. Show that the velocity potential exists for the flow. Also derive the expression of velocity potential function. b) Derive the expression for velocity potential function and stream function for a source flow. c) Derive the equation for the equipotential lines and streamlines for a source flow and show that they are perpendicular to each other. [$8+8+4$ marks $]$	20	CO 3
Q11	a) What is Strouhal number. What is its significance? Draw the Strouhal number vs Reynolds number curve for the flow over a circular cylinder. b) The smoke stake (chimney) of a chemical plant is 120 meter tall. The average diameter of the chimney is 10 meters. The first and second mode natural frequencies of the structure (chimney) are 1.5 Hz and 9 Hz . Calculate the wind speeds at which the resonance in the structure is likely to occur due to vortex-induced vibration. c) On a thin flat plate of 2 m length x 1 m width, experiments were conducted in a wind tunnel at a wind speed of $50 \mathrm{~m} / \mathrm{s}$. The plate is kept fixed at such an angle that the coefficients of drag and lift are 0.1 and 0.9 , respectively. Determine the lift, drag and resultant force acting on the plate. $[4+8+8 \text { marks }]$	20	CO 2

