Name: Enrolment No:			
Course: Strength of Materials Semester: IV Program: B.Tech (FSE) Time : 03 hrs. Course Code: MECH2018 Max. Marks: 100 Instructions:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Write relationship between tensile stress, tensile strain and young's modulus.	4	CO1
Q 2	Define Poisson's ratio.	4	CO1
Q 3	Why the knowledge of "strength of materials" is important?	4	CO5
Q 4	What is factor of safety? Support your answer with suitable example.	2+2	CO1
Q 5	Determine the Poisson's ratio and bulk modulus of a material for which Young's modulus is $10^{\wedge} 5 \mathrm{MPa}$ and modulus of rigidity is $3 \times 10^{\wedge} 4 \mathrm{MPa}$.	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	A tensile test was conducted on a mild steel bar. The following data was obtained from the test: i. Diameter of the steel bar $=4 \mathrm{~cm}$ ii. Gauge length of the bar $=22 \mathrm{~cm}$ iii. Load at elastic limit $=250 \mathrm{kN}$ iv. Extension at a load of $160 \mathrm{kN}=0.235 \mathrm{~mm}$ v. Maximum load $=390 \mathrm{kN}$ vi. Total extension $=70 \mathrm{~mm}$ vii. \quad Diameter of rod at failure $=2.35 \mathrm{~cm}$ Determine: a) The Young's modulus (3 marks) b) The stress at elastic limit (2 marks) c) The percentage of elongation (2 marks)	10	CO1

	d) The percentage decrease to area. (3 marks) OR Two bars made of copper and aluminum are of equal length and have cross section 555 and 1020 sq.mm respectively. They are rigidly connected at their ends. If this compound member is subjected to a longitudinal pull of 255 kN , estimate the proportional of the load carried on each rod and the induced stresses. Take the value of E for copper $=1.4 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and for aluminum $=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	5+5	
Q 7	(i) A circular shaft is subjected to a torque of 10 kNm . The power transmitted by the shaft is 209.33 kW . Find the speed of shaft in revolution per minute. (ii) Write about Torsional equation.	6 4	CO 2
Q 8	i) Write the expression for following type of column end conditions: a. Both Ends Hinged. b. Both Ends Fixed. c. One End Fixed and Other Hinged. d. One End Fixed and Other Free. ii) A rectangular beam of breadth 100 mm and depth 200 mm is simply supported over a span of 4 m . The beam is loaded with an uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ over the entire span. Find the maximum bending stresses.	4 6	CO 2
Q 9	Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property, and environmental safety. Material degradation has strong potential to cause fire. Explain how "Strength of Materials "knowledge can ensure fire accidents do not cause any calamity to life, properties and environment.	10	$\mathrm{CO5}$
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	(i) A simply supported beam of span 4 m is subjected to a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over its entire length. Sketch the bending moment and shear force diagram for the beam. (ii) Draw the SFD for the following loading:	10 10	CO3

Q 11	For the state of plane stress as shown in the figure below:		
	1. Draw the Mohr's circle and indicate the points that represent stresses on face X and on face Y . (6 marks) 2. Using the Mohr's circle, determine the normal and shear stress on the inclined plane shown in the figure and label this point as N on the Mohr's circle. (6 marks) 3. Also determine minimum and maximum principal stresses (4 marks) 4. Also mark maximum shear stress point on Mohr's circle diagram. (4 marks) OR	20	CO4

	1. Draw the Mohr's circle and indicate the points that represent stresses on face X and on face Y. (6 marks) 2. Using the Mohr's circle, determine the normal and shear stress on the inclined plane shown in the figure and label this point as N on the Mohr's circle. (6 marks) 3. Also determine minimum and maximum principal stresses (4 marks) 4. Also mark maximum shear stress point on Mohr's circle diagram. (4 marks)	

