

| 8 | A simple gas turbine takes in air at 1.0 bar and $27^{\circ} \mathrm{C}$ and compresses to a pressure of 6 bar with the isentropic efficiency of compression being $85 \%$. The air passes to the combustion chamber, and after combustion the gases enter the turbine a temperature of $560^{\circ} \mathrm{C}$ and expand to 1.00 bar, the turbo efficiency being $80 \%$. Neglecting the change of mass flow rate due to fuel, calculate the flow of air in kg per second for a net output of 1500 kW making the following assumptions: Loss of pressure in combustion chamber $=0.08$ bar | 10 | CO3 |
| :---: | :---: | :---: | :---: |
| 9 | A $50 \%$ reaction axial flow compressor has inlet and outlet blade angles of 450 and 12 o respectively. The blade speed at the tip of the rotor is $320 \mathrm{~m} / \mathrm{s}$. If the inlet total temperature is 300 K , determine the tip relative Mach number. | 10 | C02 |
| $\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$ |  |  |  |
| 10 | Analyze an axial flow compressor in which Air at 1 bar and 288 K enters to the compressor with an axial velocity of $150 \mathrm{~m} / \mathrm{s}$. There are no inlet guide vanes. The rotor stage has a tip diameter of 60 cm and a hub diameter of 50 cm and rotates at 100 rps . The air enters the rotor and leaves the stator in the axial direction with no change in velocity or radius. The air is turned through $30.2^{0}$ as it passes through the rotor. Assume an overall pressure ratio of 6 and a stage pressure ratio of 1.2. Find a)the mass flow rate of air, b) the power required to drive the compressor, $c$ ) the degree of reaction at the mean diameter, $d$ ) the number of compressor stages required if the isentropic efficiency is 0.85 . | 20 | C04 |
| 11 | A multi-stage axial turbine is to be designed with impulse stages and is to operate with an inlet pressure and temperature of 6 bar and 900 K and outlet pressure of 1 bar . The isentropic efficiency of the turbine is $85 \%$. All the stages are to have a nozzle outlet angle of $75^{\circ}$ and equal inlet and outlet rotor blade angles. Mean blade speed is $250 \mathrm{~m} / \mathrm{s}$ and the axial velocity is $150 \mathrm{~m} / \mathrm{s}$ and is a constant across the turbine. Estimate the number for stages required for this turbine. <br> OR <br> Analyze Piper Cherokee aircraft propeller which is coupled with 4 stroke CI engine having cylinder diameter 12 cm and stroke 15 cm has mechanical efficiency $75 \%$, assume frictional power for IC engine is 50 KW , air fuel ratio $18: 1$ and its fuel consumption is $60 \mathrm{~kg} / \mathrm{h}$. If the engine rotates at 3000 RPM. Calculate the diameter of the propeller and pitch angle at 220 KMPH speed of an aircraft. Refer the table and graph for the Piper Cherokee aircraft. | 20 | CO4 |



Formulas
'I of diesel cycle:-

$$
\eta_{\text {Die }}=1-\left(\frac{1}{y\left(r_{k}\right)^{-1}}\right) \times\left(\frac{\gamma_{c}{ }^{\varphi}-1}{\gamma_{c}-1}\right)
$$

Volumetric effeciency.

$$
\eta_{v}=\frac{V_{\text {air }} \quad \begin{array}{l}
V_{3} \times \frac{N}{2} \\
V_{s}=\frac{\pi}{4} D^{2} L
\end{array} \text { min }}{}
$$

Mean effective Pressure

$$
\begin{aligned}
& 1 \cdot P=\frac{P_{\text {PEP }} \text { LAnk }}{60 \times 1000} \\
& k \rightarrow n 0 \text { of cylinder } \\
& n \rightarrow N / 2 \rightarrow 4 \text { stroke } \\
& n \rightarrow N \rightarrow 2 \text { stroke }
\end{aligned}
$$

Effectiveness e of $H \cdot E$

$$
\epsilon=\frac{T_{a}-T_{2}}{T_{4}-T_{2}} \left\lvert\, \overrightarrow{T_{2}} \frac{T_{4} \cdot T_{4}}{T_{T_{a}}}\right.
$$

$P_{\text {actual }}=\dot{m} \phi_{w} \phi_{s} U_{2}^{2}=\dot{m} c_{p} \Delta T \quad \omega=V_{\omega_{2}} U_{2}-V_{\omega_{1}} U_{1}$

$$
\eta_{c}=\frac{\pi_{c} \frac{y-1}{y}-1}{\left(T_{02} / T_{01}\right)-1}
$$

$$
\frac{U}{C a}=\tan \alpha_{1}+\tan \beta_{1}=\tan \alpha_{2}+\tan \beta_{2}
$$

$$
\omega=U C a\left(\tan \alpha_{2}-\tan \alpha_{1}\right)
$$

$$
=U\left(a\left(\tan \beta_{1}-\tan \beta_{2}\right)\right.
$$

$$
\left(\frac{P_{03}}{P_{01}}\right)=\left[1+\eta_{s t} \frac{U \Delta C_{w}}{C_{p} T_{01}}\right]^{\frac{y}{y-1}}
$$

$$
\phi=\frac{c a}{v}
$$

$$
\psi=\frac{\Delta C_{\omega}}{U}=\frac{\Delta h_{0}}{U^{2}}
$$

$$
R_{x}=\frac{C a}{2 U}\left(\tan \beta_{1}+\tan \beta_{2}\right)
$$

$$
\Delta T_{0 S}=\frac{\lambda U C_{a}}{C_{p}}\left(\tan \beta_{1}-\tan \beta_{2}\right)
$$

$$
\begin{aligned}
& \Delta \text { overall }=\frac{T_{01}}{\eta_{s t}}\left(\pi_{0}^{\left(\frac{(Y-1)}{Y}-1\right)} \quad \frac{V_{e}+V_{\infty}}{2}=\right. \\
& C_{s}=\left(\frac{\rho V_{0}^{5}}{\rho_{n}^{2}}\right)^{1 / 5}=\frac{J}{\left(C_{p}\right)^{1 / s}} \quad \eta_{i}=\frac{1}{1+\left(V_{/ \infty}\right)}
\end{aligned}
$$

$$
T=P A\left(v_{\infty}+v\right) 2 v=2 \dot{m} v
$$

$$
v=\frac{\left[-v_{\infty}+\sqrt{V_{\infty}{ }^{2}-(2 T / P A)}\right]}{2}
$$

$$
\begin{aligned}
& J=\frac{V_{\infty}}{n D} \quad R_{x}^{T u r i n e v}, \frac{1}{2}\left[1-\frac{C a}{V}\left(\tan \alpha_{2}+\tan \beta_{3}\right)\right] \quad \psi=\frac{C \omega_{2}-C \omega_{3}}{U} \quad \frac{\Delta T_{0}}{T_{0}}=\frac{V\left(\omega_{\omega_{2}}-\omega_{3}\right)}{C p T_{01}} \\
& \omega_{T}=U\left(C_{\omega_{2}}-C_{\omega_{3}}\right)=C_{p}\left(T_{02}-T_{03}\right)_{T_{2}=\sigma_{1}} \quad P=\dot{m} U\left(C_{\omega_{2}}-C_{\omega_{3}}\right) \\
& \eta_{T S}=\frac{1-\left(T_{03} / T_{O 1}\right)}{1-\left(P_{3} / P_{O 1}\right)^{\frac{\gamma-1}{y}}} \quad \eta_{T T}=\frac{\eta_{T S}}{1-C_{3}^{2}\left[2 C_{P}\left(T_{01}-T_{S S}\right)\right]} \\
& N_{T}=\eta_{T T} C_{P} T_{01}\left(1-\left(\frac{P_{03}}{P_{01}}\right)^{\frac{Y-1}{y}}\right) \\
& \omega_{T}=\eta_{T S} C_{P} T_{01}\left[1-\left(\frac{P_{3}}{P_{1}}\right)^{\frac{Y-1}{y}}\right]
\end{aligned}
$$

