Name:

Enrolment No:

UPES End Semester Examination, May 2023

Program Name: B. Tech (APE Upstream) Course name: Transport Phenomena in Geosystems Course Code: PEAU 2007

Semester: IV Time: 3hrs. Max. Marks: 100

Note: Assume suitable data wherever necessary

	Attempt all the questions. All questions carry equal marks.		
S. No.	Section - A	Marks	СО
Q1	The diffusivity of the gas pair O_2 -CC1 ₄ is being determined by observing the steady- state evaporation of carbon tetrachloride into a tube containing oxygen. The distance between the CCl ₄ , liquid level and the top of the tube is $Z_2 - Z_1 = 17.1$ cm. The total pressure on the system is 755 mm Hg, and the temperature is 0°C. The vapor pressure of CCl ₄ at that temperature is 33.0 mm Hg. The cross-sectional area of the diffusion tube is 0.82 cm ² . It is found that 0.0208 cm ³ of CCl ₄ , evaporate in a 10-hour period after steady state has been attained. Compute diffusivity of the gas pair O ₂ -CCl ₄ ? (Density of CCl ₄ is 1.59 gm/cm ³).	12	CO3
Q2	The wall of a boiler is made up of 250mm of the brick, $K_{FB} = 1.05$ W/m K; 120 mm of insulation brick $K_{IB} = 0.15$ W/m K, and 200 mm of red brick, $K_{RB} = 0.85$ W/m K. The inner and outer surface temperatures of the wall are 850° C and 65° C respectively. Calculate the temperatures at the contact surfaces.	12	CO2
Q3	Describe different forces acting on the fluid particle. Summarize stress tensors and their representations with proper schematic diagram.	12	CO1
Q4	Show that for equimolar counter diffusion $D_{AB} = D_{BA}$ (Diffusivity)	12	CO1
Q5	A semi-infinite body of liquid with constant density and viscosity is bounded below by a horizontal surface (the xz-plane). Initially the fluid and the solid are at rest. Then at time $t = 0$ the solid surface is made to oscillate in the positive x direction with frequency ω with velocity $v_0 \sin(\omega t)$. Express the velocity v_x , as a function of y and t. There is no pressure gradient or gravity force in the x direction, and the flow is presumed to be laminar.	12	CO4
	Section – B	L	
	(Answer all questions)	Γ	[
Q6	A Newtonian fluid is in laminar flow in a narrow slit (see figure) formed by two parallel walls a distance 2B apart. It is understood that B< <w, <b="" a="" and="" are="" balance="" differential="" distribution.="" edge="" effects="" flux="" make="" momentum="" obtain="" so="" that="" unimportant.="" velocity="">Determine the average velocity to maximum velocity ratio for the flow.</w,>	20	CO2

	Fluid in x z z z z z z z z		
Q7	 (a) Summarize Fourier's law of heat conduction (b) A current of I amp/m² is maintained through a current carrying conductor of radius R whose surface temperature is maintained at T_o. The rate of heat generation per unit volume resulting from electrical dissipation within the conductor is equal to S_e (W/m²) = I² /k_e, where k_e is the electrical conductivity of the wire. Using a shell energy balance approach, obtain the expressions for the temperature distribution in the wire, maximum temperature, and average temperature 	5+15	CO2+ CO3

Appendix:

The Equation of continuity:

$$[\partial \rho / \partial t + (\nabla \cdot \rho \mathbf{v}) = 0]$$

Cartesian coordinates (x, y, z):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho v_x \right) + \frac{\partial}{\partial y} \left(\rho v_y \right) + \frac{\partial}{\partial z} \left(\rho v_z \right) = 0$$

Cylindrical coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(\rho r v_r \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(\rho v_\theta \right) + \frac{\partial}{\partial z} \left(\rho v_z \right) = 0$$

Spherical coordinates (r, θ, ϕ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho r^2 v_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\rho v_\theta \sin \theta \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\rho v_\phi \right) = 0$$

Equation of motion for the Newtonian Fluid with constant density and constant viscosity:

$\rho\left(\frac{\partial v_x}{\partial t} + v_x\frac{\partial v_x}{\partial x} + v_y\frac{\partial v_x}{\partial y} + v_z\frac{\partial v_x}{\partial z}\right) = -\frac{\partial p}{\partial x} + \left[\frac{\partial}{\partial x}\tau_{xx} + \frac{\partial}{\partial y}\tau_{yx} + \frac{\partial}{\partial z}\tau_{zx}\right] + \rho g_x$
$\rho \left(\frac{\partial v_y}{\partial t} + v_z \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \left[\frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial y} \tau_{yy} + \frac{\partial}{\partial z} \tau_{zy} \right] + \rho g_y$
$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \left[\frac{\partial}{\partial x}\tau_{zz} + \frac{\partial}{\partial y}\tau_{yz} + \frac{\partial}{\partial z}\tau_{zz}\right] + \rho g_z$

Cartesian coordinates (x, y, z):

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right] + \rho g_x$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_z \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right] + \rho g_y$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z$$

Cylindrical coordinates (r, θ, z) :^b

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_{\theta}^2}{r} \right) = -\frac{\partial p}{\partial r} + \left[\frac{1}{r} \frac{\partial}{\partial r} (r\tau_{rr}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta r} + \frac{\partial}{\partial z} \tau_{zr} - \frac{\tau_{\theta \theta}}{r} \right] + \rho g_r$$

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + v_z \frac{\partial v_{\theta}}{\partial z} + \frac{v_r v_{\theta}}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{r\theta}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta \theta} + \frac{\partial}{\partial z} \tau_{z\theta} + \frac{\tau_{\theta r} - \tau_{r\theta}}{r} \right] + \rho g_{\theta}$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \left[\frac{1}{r} \frac{\partial}{\partial r} (r\tau_{rz}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta z} + \frac{\partial}{\partial z} \tau_{zz} \right] + \rho g_z$$

Cylindrical coordinates (r, θ, z) :

$$\begin{split} \rho \bigg(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \bigg) &= -\frac{\partial p}{\partial r} + \mu \bigg[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \bigg] + \rho g_r \\ \rho \bigg(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} + \frac{v_r v_\theta}{r} \bigg) &= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \bigg[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_\theta) \right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \bigg] + \rho g_\theta \\ \rho \bigg(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \bigg) &= -\frac{\partial p}{\partial z} + \mu \bigg[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \bigg] + \rho g_\theta \end{split}$$

Spherical coordinates (r, θ, ϕ) :^c

$$\begin{split} \overline{\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r}\right)} &= -\frac{\partial p}{\partial r} \\ &+ \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta r} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi r} - \frac{\tau_{\theta \theta} + \tau_{\phi \phi}}{r}\right] + \rho g_r \\ \rho \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_\theta}{\partial \phi} + \frac{v_r v_\theta - v_\phi^2 \cot \theta}{r}\right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} \\ &+ \left[\frac{1}{r^3} \frac{\partial}{\partial r} (r^3 \tau_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta \theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi \theta} + \frac{(\tau_{\theta r} - \tau_{r\theta}) - \tau_{\phi \phi} \cot \theta}{r}\right) + \rho g_\theta \\ \rho \left(\frac{\partial v_\phi}{\partial t} + v_r \frac{\partial v_\phi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\phi}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} + \frac{v_\phi v_r + v_\theta v_\phi \cot \theta}{r}\right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \\ &+ \left[\frac{1}{r^3} \frac{\partial}{\partial r} (r^3 \tau_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta \phi} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi \phi} + \frac{(\tau_{\phi r} - \tau_{r\phi}) + \tau_{\phi \theta} \cot \theta}{r}\right] + \rho g_\phi \end{split}$$