Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Program Name: B.Tech APE Gas

Course Name : Natural Gas Engineering

Course Code : CHCE 2024

Nos. of page(s) :

Instructions: Answer the questions in sequence.

	(Attor	SECTION A npt all 5 questions and each carries 4 marks) (5 X 4=20Marks)		
S. No.		npt an 5 questions and each carries 4 marks) (5 A 4–20101arks)	Marks	СО
Q1.	Define Non-associ	4 M	CO1	
Q2.	Derive the material compositions.	4M	CO2	
Q3.	Illustrate Clearanc	e with a neat diagram and describe volumetric efficiency.	4 M	CO3
Q4.	Describe the parameters with which the flow meters are characterized.			CO4
Q5.	Explain the field processing of natural gas.			CO5
	(Attempt all	SECTION B 4 questions and each carries 10 marks) (4 X 10 = 40Marks)		
Q6.	Given the following weight fractions of a gas:			
	Component	Weight		
		fraction (y _i)		
	C ₁	0.60		
	C ₂	0.17		
	C ₃	0.13		
	n-C ₄	0.06	1014	CO1
	n-C ₅	0.04	10M	CO1
	Calculate			
	a. Mole fraction of			
	b. Apparent molecular weight.			
	c. Density at 300 psia and 130°F, assuming real gas behavior.			
	d. Specific gravity, and specific volume at 300 psia and 130°F			
	e. Gas formation volume factor in ft^3/scf .			
Q7.	Solve the horsepower required by a centrifugal compressor (straight throughflow, no			CO3
-	intercooler)for con			
	to 500 psia . Assum			
	efficiency is 0.725	10M		
Q8.	What type of separators should be used for-			CO5
	a)offshore production platform?			
	b)high GOR with liquid surges?			

Semester: IV Time: 3 hr Max. Marks: 100

	c) low GOR well producing oil, water, gas?		
	d) heavy, waxy crude (GOR can be assumed to be low for heavy oils)?		
	e) gas condensates with a hydrate problem?		
	f)nearly dry gas at high pressure?		
Q9.	Describe the three major components of oil-water-gas separators.	10M	CO5
	SECTION C		
	(Attempt all 2 questions and each carries 20 marks) (2X 20 = 40Marks)		
Q10.	Gas is being compressed from 100 psia and 150°F to 2,500 psia and it is measured at		CO3
	the suction end. A reciprocating: compression system is to be designed to compress 5		
	MMcfd of the gas, with intercoolers and an aftercooler that cools the gas to 150°F. Find:		
	(a) Brake horsepower using the analytical method.		
	(b) Brake horsepower using the Mollier diagram method.		
	(c) Estimate the cooling requirements from part (b) results.		
	(d) From the results of part (b). determine whether the first stage can be handled by a		
	compressor with a speed 1,200 rpm, piston diameter - 12 in., and stroke length - 3 ft.		
	Assume η =0.80, A - 0.05, Lu =0. and Cl= 0.08. Neglect any gas compressibility		
	factor effects. Specific gravity=0.612,k=1.2565		
Q11.	Compute the daily flow rate of natural gas through an orifice meter for the following	20M	CO4
-	conditions :		
	Barometer=14.5 psia		
	Diameter of a pipe=11.938 in.		
	Orifice diameter=4.000 in		
	Differential pressure across meter=27.0 in water		
	Average downstream gauge pressure=678 psig		
	Flowing temperature=75°F		
	Gas gravity=0.63		
	Mole fraction $CO_2=0.013$		
	Mole fraction $N_2=0.031$		
	Type of meter=Flange taps		
	Temperature base=60°F		
	Pressure base=14.65 psia		

Table 1: Properties of Natural gas components

			Critical Constants			
		Molecular	P_{c}	T_c	Ve	
Compound	Formula	Weight	psia[kPa]	° R[° K]	ft³ /lb[m³ /kg]	Z_{c}
Methane	CH_4	16.043	667.8 [4,604]	343 [190.6]	0.0991 [0.0062]	0.2884
Ethane	$C_2 H_6$	30.070	707.8 [4,880]	549.8 [305.4]	0.0788 [0.00492]	0.2843
Propane	C_3H_8	44.097	616.3 [4,249]	665.7 [369.8]	0.0737 [0.0046]	0.2804
n-Butane	$C_{4}H_{10}$	58.124	550.7 [3,797]	765.3 [425.2]	0.0702 [0.00438]	0.2736
Isobutane	$C_{4}H_{10}$	58.124	529.1 [3,648]	734.7 [408.2]	0.0724 [0.00452]	0.2824
n-Pentane	$C_{5}H_{12}$	72.151	488.6 [3,369]	845.4 [469.7]	0.0675 [0.00422]	0.2623
Isopentane	$C_{5}H_{12}$	72.151	490.4 [3,381]	828.8 [460.4]	0.0679 [0.00424]	0.2701
Neopentane	$C_{5}H_{12}$	72.151	464.0 [3,199]	781.11 [434]	0.0674 [0.00421]	0.2537
n-Hexane	$C_{6}H_{14}$	86.178	436.9 [3,012]	913.4 [507.4]	0.0688 [0.0043]	0.2643
n-Heptane	$C_{7} H_{16}$	100.205	396.8 [2,736]	972.5 [540.3]	0.0691 [0.00432]	0.2633
n-Octane	$C_{8}H_{18}$	114.232	360.6 [2,486]	1,023.9 [568.8]	0.0690 [0.0043]	0.2587
n-Nonane	$C_{9}H_{20}$	128.30	332 [2,289]	1,070.3 [594.6]	0.0684 [0.00427]	0.2536
n-Decane	$C_{10} H_{22}$	142.30	304 [2,096]	1,111.8 [617.7]	0.0679 [0.00424]	0.2462
Ethylene	$C_2 H_4$	28.054	729.8 [5,032]	508.6 [282.6]	0.0737 [0.0046]	0.2765
Propene	C_3H_6	42.081	669. [4,613]	656.9 [364.9]	0.0689 [0.0043]	0.2752
Acetylene	C_2H_2	26.038	890.4 [6,139]	555.3 [308.5]	0.0695 [0.00434]	0.2704
Carbon Dioxide	CO_2	44.010	1071. [7,382]	547.6 [304.2]	0.0342 [0.00214]	0.2742
Hydrogen Sulfide	H_2S	34.076	1306 [9,005]	672.4 [373.6]	0.0459 [0.00287]	0.2831
Sulfur Dioxide	SO_2	64.059	1145. [7,894]	775.5 [430.8]	0.0306 [0.00191]	0.2697
Nitrogen	N_2	28.013	493 [3,399]	227.3 [126.3]	0.0514 [0.00321]	0.2916
Water	H_2O	18.015	3208. [22,105]	1,165.0 [647.2]	0.0500 [0.00312]	0.2350

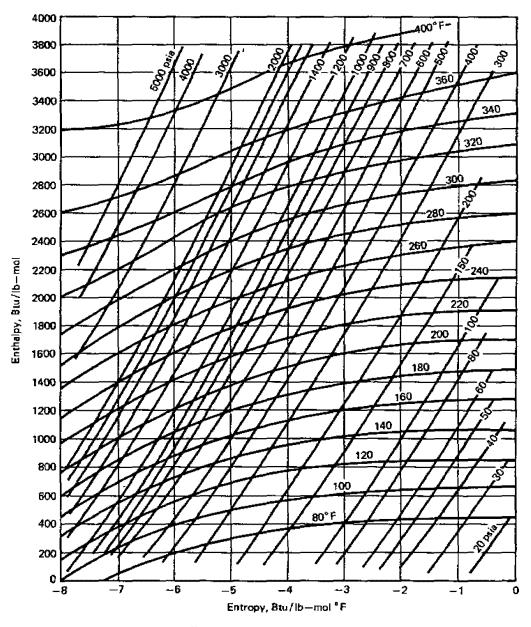


Fig. 3.15 Enthalpy-entropy diagram for a 0.65 to 0.75 specific gravity natural gas. (After Campbell.)