Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End-Semester Examination, May 2023

	End-Semester Examination, May 2023			
Course	: Mathematical Physics -III Se	emester	: IV	
Program	n : B. Sc. (Hon.) T	ime	: 03 hrs.	
Course	Code: (PHYS 2027) N	Iax. Marl	ks: 100	
	tions: All questions are compulsory (Q. 9 and Q. 11 have internal choice) Scientific calculators can be used for calculations			
	SECTION A			
	(5Qx4M=20Marks)		<u> </u>	
S. No.	Attempt all Questions (Short answer type)		Marks	CO
Q.1	Find the roots of the complex Equation:			
	$Z^{5} = 5$		04	CO1
Q.2	State the "Convolution Theorem" in Fourier Transform. Find the convolution of the functions $f(x)$ and $g(x)$ given by: $f(x) = \delta(x-a)$ a $g(x) = \sin(x)$: a is a constant and δ is the Dirac delta.	nd	04	CO2
Q.3	Given that a periodic function $f(x)$ is expanded in Fourier Series $f(x) = a_0/2 + \sum_{1}^{\infty} a_n \cos(nx) + \sum_{1}^{\infty} b_n \sin(nx)$ where, a_0 , a_n and b_n have usual meaning. If $C_n = (a_n - i.b_n)/2$, prove i) $C_{-n} = (a_n + ib_n)/2$ and ii) $C_0 = a_0/2$	that	04	CO1
Q.4	Prove that the Laplace transform of a periodic function f(t) with periodicity T, is $\{F_0(S)/(1-\exp(-TS)\}$: Where $F_0(S) = \int_0^T f(t)e^{-St} dt$		04	CO3

Q.5	Given $L(\omega)$ is the Laplace Transform for a function f (x). Write/find the expression for the Laplace Transform of the function f (a.x); where 'a' is a constant.	04	CO2
	SECTION B		
	(4Qx10M= 40 Marks) Attempt all questions. Please note that Q.9 has a choice.		
Q.6	Find the Fourier Transform of the function!		
	$f(t) = e^{ibt}: \qquad -a < t < a$	10	CO3
	= 0 : otherwise		
Q.7	a) Comment on the singularity of the function		
	$f(Z) = \{3Z^3/(Z^2 + 3^2)^2\}$		
	b) Evaluate the integral		
	$\oint f(Z).dz$	10	CO1
	c c		
	around 'C' given by the closed path $ Z - 2i = 3$. f(Z) is given in		
	part a), above.		
Q.8	Given that the Laplace transform of 1 {that is $L(1)$ } = 1/S. Staring from		
	this find the Laplace transform of	10	CO3
	a) t ⁿ : [Hint: use the property frequency differentiation]	10	005
	b) e^{at} : [Hint: use the property frequency shift]		
Q.9	Attempt any one (Either I or II)		
	I. A Fourier Series for a function $f(x)$ is given as		
	$f(x) = a_0/2 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$		CO2
	What should be the condition/conditions imposed on the above series so		
	that we can perform term by term a) Integration and b) differentiation		
	OR	10	
	II. Find Fourier Transform (U (k, t)) of the function u(x, t), which satisfies the Partial Differential Equation: $u_{xx} = u_t$;		CO4
	where $u_{xx} = \frac{\partial^2 u(x,t)}{\partial x^2}$ and $u_t = \frac{\partial u}{\partial t}$		

	Given $u(x,0) = \delta(x)$, where $\delta(x)$ is the Dirac delta function.		
	SECTION-C (2Qx20M=40 Marks)		
	Attempt all questions. Please note that Q. 11 has a choice.		
Q.10	Use Laplace Transform to solve the following Ordinary Differential Equation: $y'' - 3y' + 2y = \exp(3t)$; where $y' = dy(t)/dt$. Etc. Initial Conditions: $y(0) = 1$ and $y'(0) = 0$.	20	CO4
Q.11	Attempt any one (Either I or II):I. Find the Fourier series for a Saw-Tooth function $f(x)$ given by $f(x) = 2\pi - x$ for $0 < x < 2\pi$ And $f(x) = f(x+2\pi)$		CO3
	And $f(x) = f(x+2\pi)$ OR II. Evaluate the Fourier transform of the following functions:	20	
	a) $\exp(-ax^2)$: $a > 0$ b) $\sin(ax)$: $a > 0$		CO3