Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End-Semester Examination, May 2023			
Course : Mathematical Physics -III Semester : IV Program : B. Sc. (Hon.) Time :03 h Course Code: (PHYS 2027) Max. Marks: $\mathbf{1 0 0}$ Instructions: \bullet All questions are compulsory (Q. 9 and Q. 11 have internal choice) 			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.	Attempt all Questions (Short answer type)	Marks	CO
Q. 1	Find the roots of the complex Equation: $Z^{5}=5$	04	$\mathrm{CO1}$
Q. 2	State the "Convolution Theorem" in Fourier Transform. Find the convolution of the functions $f(x)$ and $g(x)$ given by: $f(x)=\delta(x-a)$ and $\mathrm{g}(\mathrm{x})=\sin (\mathrm{x})$: a is a constant and δ is the Dirac delta.	04	$\mathrm{CO2}$
Q. 3	Given that a periodic function $\mathrm{f}(\mathrm{x})$ is expanded in Fourier Series $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0} / 2+\sum_{1}^{\infty} a_{n} \cos (\mathrm{nx})+\sum_{1}^{\infty} b_{n} \sin (\mathrm{nx})$ where, a_{0}, a_{n} and b_{n} have usual meaning. If $C_{n}=\left(a_{n}-i . b_{n}\right) / 2$, prove that i) $\quad \mathrm{C}_{-\mathrm{n}}=\left(\mathrm{a}_{\mathrm{n}}+\mathrm{ib} \mathrm{b}\right) / 2$ and ii) $\quad \mathrm{C}_{0}=\mathrm{a}_{0} / 2$	04	CO1
Q. 4	Prove that the Laplace transform of a periodic function $f(t)$ with periodicity T , is $\left\{\mathrm{F}_{\mathrm{o}}(\mathrm{S}) /(1-\exp (-\mathrm{TS})\}\right.$: Where $\mathrm{F}_{\mathrm{o}}(\mathrm{S})=\int_{0}^{T} f(t) e^{-S t} d t$	04	$\mathrm{CO3}$

Q. 5	Given $L(\omega)$ is the Laplace Transform for a function $\mathrm{f}(\mathrm{x})$. Write/find the expression for the Laplace Transform of the function f (a.x); where ' a ' is a constant.	04	CO2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
	Attempt all questions. Please note that Q. 9 has a choice.		
Q. 6	Find the Fourier Transform of the function! $\begin{aligned} f(t) & =e^{\text {ibt. }}: & & -a<t<a \\ & =0: & & \text { otherwise } \end{aligned}$	10	$\mathrm{CO3}$
Q. 7	a) Comment on the singularity of the function $f(Z)=\left\{3 Z^{3} /\left(Z^{2}+3^{2}\right)^{2}\right\}$ b) Evaluate the integral $\oint_{c} f(Z) \cdot d z$ around ' C ' given by the closed path $\|Z-2 i\|=3 . f(Z)$ is given in part a), above.	10	CO1
Q. 8	Given that the Laplace transform of $1\{$ that is $L(1)\}=1 / \mathrm{S}$. Staring from this find the Laplace transform of a) t^{n} : [Hint: use the property frequency differentiation] b) $\mathrm{e}^{\text {at }}:$ [Hint: use the property frequency shift]	10	$\mathrm{CO3}$
Q. 9	Attempt any one (Either I or II) I. A Fourier Series for a function $f(x)$ is given as $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0} / 2+\sum_{1}^{\infty} a_{n} \cos (\mathrm{nx})+\sum_{1}^{\infty} b_{n} \sin (\mathrm{nx})$ What should be the condition/conditions imposed on the above series so that we can perform term by term a) Integration and b) differentiation OR II. Find Fourier Transform $(\mathrm{U}(\mathrm{k}, \mathrm{t}))$ of the function $\mathrm{u}(\mathrm{x}, \mathrm{t})$, which satisfies the Partial Differential Equation: $u_{x x}=u_{t}$; where $u_{x x}=\partial^{2} u(x, t) / \partial x^{2} \quad$ and $u_{t}=\partial u / \partial t$	10	CO 2 $\mathrm{CO4}$

	Given $\mathrm{u}(\mathrm{x}, 0)=\delta(\mathrm{x})$, where $\delta(\mathrm{x})$ is the Dirac delta function.		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
	Attempt all questions. Please note that Q. 11 has a choice.		
Q. 10	Use Laplace Transform to solve the following Ordinary Differential Equation: $y^{\prime \prime}-3 y$ ' $+2 \mathrm{y}=\exp (3 \mathrm{t})$; where $\mathrm{y}^{\prime}=\mathrm{dy}(\mathrm{t}) / \mathrm{dt}$. Etc. Initial Conditions: $y(0)=1$ and $y^{\prime}(0)=0$.	20	$\mathrm{CO4}$
Q. 11	Attempt any one (Either I or II): I. Find the Fourier series for a Saw-Tooth function $f(x)$ given by $f(x)=2 \pi-x \quad \text { for } \quad 0<x<2 \pi$ And $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+2 \pi)$ OR II. Evaluate the Fourier transform of the following functions: a) $\exp \left(-a x^{2}\right): a>0$ b) $\sin (a x) \quad: a>0$	20	CO 3 CO3

