Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Introduction to MATLAB programming Program: B.Sc. Physics Course Code: MATH 2034K Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Describe <i>who</i> and <i>whos</i> commands with examples.	4	CO1
Q 2	Describe <i>continue</i> statement using an example.	4	CO2
Q 3	Write a program using symbolic math to carry out the multiplication of the following polynomial. (x + 3)(x - 4)x(x + 8)(x - 1).	4	CO2
Q 4	Write a program to define and plot a two variable function in 3- dimensions.	4	CO3
Q 5	Explain how to create symbolic numbers with variable precision.	4	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Outline the use of <i>colon</i> operator.	10	CO1
Q 7	The position of a moving particle as a function of time is given by: $x = (4 - 0.1t) \sin(0.8t), y = (4 - 0.1t) \cos(0.8t)$ and $z = 0.4t^{\frac{3}{2}}$ Write a program to plot the position of the particle for $0 \le t \le 30$.	10	соз
Q 8	Write a program to find following indefinite integrals using symbolic functions: (a) $\int \frac{x^3}{\sqrt{1-x^2}} dx$ (b) $\int x^2 \cos x dx$	10	CO4
Q 9	Write ten logical and relational operators used in MATLAB. OR Write two codes explaining two kinds of loops used in MATLAB.	10	CO2

			(2	SECT	ION-C 40 Mark	s)			
Q 10	10 Write a program to find the solution of the following differential equation using symbolic math that satisfies the given initial conditions. In the program also include scripts to plot the solution for $0 \le t \le 7$. $\frac{d^2y}{dt^2} - 0.08 \frac{dy}{dt} + 0.6y = 0, \ y(0) = 2, \ y'(0) = 3.$ In the program, further include scripts to verify the solution using analytical methods.							•	
								20	CO4
Q 11	Explain how to use <i>polyfit</i> command for curve fitting. Generate 100 points near the curve $y = 3 + 4x - 2x^2$. Use <i>polyfit</i> to fit a second order polynomial over the generated data. Will the coefficients of the fitted curve will be 3, 4, -2, explain. How to estimate the proper order of polynomial given any set of random points generated from a polynomial not known in advance?								
	OR								
	The boiling temperature of water T_B at various altitudes h is given in the following table.						20	CO2	
	h (ft) 0 T(°F) 212	2000 210	5000 203	7500 198	10000 194	20000 178	26000 168		
	Write a program to determine the following. (a) a linear equation in the form $T_B = mh + b$ that best fits the data. (b) An estimate of the fitting error. (c) Use the equation to calculate the boiling temperature at 16000 ft. (d) Make a plot of the points and the equation. How will the fit change if we use exponential function to fit the data?								