| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| UPES  <br> End Semester Examination, May 2023 $\quad$Course: Introduction to MATLAB programming Timester: IV $: 03 \mathrm{~h}$ <br> Program: B.Sc. Physics Max. Marks: <br> Course Code: MATH 2034K  <br> Instructions: Attempt all the questions.  |  |  |  |
| $\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$ |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Describe who and whos commands with examples. | 4 | CO1 |
| Q 2 | Describe continue statement using an example. | 4 | CO2 |
| Q 3 | Write a program using symbolic math to carry out the multiplication of the following polynomial. $(x+3)(x-4) x(x+8)(x-1)$ | 4 | CO 2 |
| Q 4 | Write a program to define and plot a two variable function in 3-dimensions. | 4 | $\mathrm{CO3}$ |
| Q 5 | Explain how to create symbolic numbers with variable precision. | 4 | CO4 |
| $\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$ |  |  |  |
| Q 6 | Outline the use of colon operator. | 10 | CO1 |
| Q 7 | The position of a moving particle as a function of time is given by: $x=(4-0.1 t) \sin (0.8 t), y=(4-0.1 t) \cos (0.8 t)$ and $z=0.4 t^{\frac{3}{2}}$ <br> Write a program to plot the position of the particle for $0 \leq t \leq 30$. | 10 | CO 3 |
| Q 8 | Write a program to find following indefinite integrals using symbolic functions: <br> (a) $\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x$ <br> (b) $\int x^{2} \cos x d x$ | 10 | CO4 |
| Q 9 | Write ten logical and relational operators used in MATLAB. <br> OR <br> Write two codes explaining two kinds of loops used in MATLAB. | 10 | CO 2 |


| $\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Q 10 | Write a program to find the solution of the following differential equation using symbolic math that satisfies the given initial conditions. In the program also include scripts to plot the solution for $0 \leq t \leq 7$. $\frac{d^{2} y}{d t^{2}}-0.08 \frac{d y}{d t}+0.6 y=0, y(0)=2, y^{\prime}(0)=3$ <br> In the program, further include scripts to verify the solution using analytical methods. | 20 | CO4 |
| Q 11 | Explain how to use polyfit command for curve fitting. Generate 100 points near the curve $y=3+4 x-2 x^{2}$. Use polyfit to fit a second order polynomial over the generated data. Will the coefficients of the fitted curve will be $3,4,-2$, explain. How to estimate the proper order of polynomial given any set of random points generated from a polynomial not known in advance? <br> OR <br> The boiling temperature of water $T_{B}$ at various altitudes $h$ is given in the following table. <br> Write a program to determine the following. (a) a linear equation in the form $T_{B}=m h+b$ that best fits the data. (b) An estimate of the fitting error. (c) Use the equation to calculate the boiling temperature at 16000 ft . (d) Make a plot of the points and the equation. How will the fit change if we use exponential function to fit the data? | 20 | CO 2 |

