Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Probability and Statistics Program: B.Sc (H) Physics / Chemistry / Geology Course Code: MATH2020G Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions: Attempt All Questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Let $\Omega = \{1,2,3,4\}$ be a sample space. Check whether the set $\mathcal{F} = \{\phi, \Omega, \{1\}, \{2,3,4\}, \{3,4\}\}$ is a sigma field. If not, then write down the smallest sigma field containing \mathcal{F} .	4	CO1	
Q 2	The coefficients of the equation $ax^2 + bx + c = 0$ are determined by throwing an ordinary die. What is the probability that the framed equation will have real roots?	4	CO1	
Q 3	Suppose that a random variable <i>X</i> has moment generating function $M_X(t) = \left(\frac{1}{2}\right)e^{-5t} + \left(\frac{1}{6}\right)e^{4t} + \left(\frac{1}{8}\right)e^{5t} + \left(\frac{5}{24}\right)e^{25t}$. Evaluate the standard deviation of <i>X</i> .	4	CO2	
Q 4	Suppose that 50 people live in a building. The parking lot has the capacity for 30 cars. If each person has a car with probability 1/2 (no one has more than one car), what is the probability that there won't be enough parking spaces for all the cars?	4	CO3	
Q 5	The marks obtained by students in a batch are distributed with mean 120 and standard deviation 5 (variance 25). B grades are awarded to students with marks between 112 and 128. Using Chebyshev's inequality, find a lower bound on the probability of a student getting B grade.	4	CO4	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Suppose that a random variable X has a distribution function $F(x) = \begin{cases} a + be^{x}, & \text{if } x < 0 \\ \frac{x^{2}}{4\pi^{2}}, & \text{if } 0 \le x < 2\pi \\ c + de^{-x}, & \text{if } x \ge 2\pi \end{cases}$	10	CO1	

	Where <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are constants. Find the values of <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> . Derive the		
	probability density/mass function of X. Also derive probability density / mass		
	function of $Y = \cos(X)$.		
Q 7	The length of similar components produced by a company are approximated		
	by a normal distribution model with a mean of 5 cm and a standard deviation	10	
	of 0.02 cm. If a component is chosen at random then compute the probability		CO1
	that the length of the component is a) between 4.98 and 5.02 cm. b) between		
	4.96 and 5.04 cm.		
Q 8	A company makes a certain device, and we are interested in its lifetime. The	10	
	lifetime is exponentially distributed with a parameter $\lambda = 2$ years. Let X be		CON
	the lifetime of a randomly chosen device. Find the generalized pdf of X and		CO2
	evaluate $P(X \ge 1)$, $P(X > 2 X \ge 1)$, $E(X)$, and $Var(X)$.		
Q 9	For each of the following random variables, Evaluate $P(X > 5)$, and $P(2 <$		
	$X \le 6$). (i) $X \sim Geometric\left(\frac{1}{5}\right), \left(f_X(x) = p(1-p)^{k-1}I_{\{1,2,\dots\}}\right)$ (ii) $X \sim C$		
	Binomial $\left(\frac{10,1}{3}\right)$, (iii) $X \sim$ Hypergeometric (10,10,12), $\left(f_X(x) = \right)$		
	$\left(\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{x}}I_{\{\max\{0,n+M-N\},\dots,\min\{n,M\}\}}\right)(iv) X \sim Poisson (5).$	10	CO2
	(n) OR		
	In each of 25 state elections, party A has a 20% chance of winning. Use the		
	binomial and normal approximation to binomial to calculate the probability		
	that party A will (a) win exactly 23 states. (b) win 4 or fewer states. (c) win		
	exactly 10 states. (d) win 10 or fewer states.		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	Suppose 50% of the population approves of the job the governor is doing, and		
	that 20 individuals are drawn at random from the population. Using both the	20	CO3
	binomial distribution and the normal approximation to the binomial calculate		
	the probability that (a) exactly 7 people will support the governor. (b) 7 or		
	fewer people will support the governor. (c) exactly 11 will support the		
	governor. (d) 11 or fewer will support the governor.		
Q 11	Random variables X and Y have joint continuous distribution with p.d.f.		
	$f(x, y) = c(x + 3y)e^{-x-2y}$, if $x, y \ge 0$ and $= 0$ therwise.		
	(a) Find the value of c. (b) Compute $E[X]$ and $E[Y]$. (c) Formulate		
	E[X Y=y].	30	004
	OR	20	CO4
	Random variables X and Y have joint continuous distribution with p.d.f.		
	$f(x, y) = cx + 1$, if $x, y \ge 0$, $x + y < 1$; and $= 0$ therwise.		
	(a) Find the value of c. (b) Compute $E[X]$ and $E[Y]$ and $P(Y < 2X^2)$.		