Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Probability and Statistics Program: B.Sc (H) Mathematics / Int. B.Sc M.Sc Mathematics Course Code: MATH2052 Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions: Attempt All Questions.

SECTION A (5Qx4M=20Marks)				
Q 1	Let $\Omega = 1,2,3,4$ be a sample space. Check whether the set $\mathcal{F} = \{\phi, \Omega, \{1\}, \{1,2\}, \{3,4\}\}$ is a sigma field. If your answer is no, then find the smallest sigma field containing \mathcal{F} .	4	CO1	
Q 2	Two dice are thrown together. What is the probability that the number obtained on one of the dice is multiple of number obtained on the other dice?	4	CO1	
Q 3	Let X be a discrete random variable taking values in $\{-3, -2, -1, 0, 1, 2, 3\}$ such that $P[X = -3] = P[X = -2] = P[X = -1] = P[X = 1] = P[X = 2] = P[X = 3]$ and $P[X < 0] = P[X = 0] = P[X > 0]$. Find the cumulative distribution function of X.	4	CO1	
Q 4	In a family of 5 children, what is the probability that there will be more boys than girls? (Use Binomial and assume that the probability of having a boy or a girl is $\frac{1}{2}$ each).	4	CO2	
Q 5	If X is a random variable with $E[X] = 3$ and $E[X^2] = 13$ then determine a lower bound for $P(-2 < X < 8)$ using Chebyshev's inequality.	4	CO3	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	Let <i>X</i> be a random variable that gives number of die tosses required to get the first 6. Then write the range of <i>X</i> , p.m.f. (probability mass function), mean, variance, and evaluate $P(X \ge 1.5)$, $P(0 < X < 4)$, and $P(X = 2 X < 5)$.	10	CO1	
Q 7	The following function defines a p.d.f. (probability density function) for some $\alpha > 0$? $f(x) = \begin{cases} \frac{1}{\alpha x^2}, & if x > 1 \\ 0, & otherwise \end{cases}$ Calculate the value of α , the corresponding CDF, and MGF. Also evaluate the expectation and variance of the corresponding random variable.	10	CO1	
Q 8	Consider two random variables <i>X</i> and <i>Y</i> with joint PMF given in the following table.	10	CO2	

	$Y = 2 \qquad Y = 4 \qquad Y = 5$		
	X = 1 1/12 1/24 1/24		
	X = 2 1/6 1/12 1/8		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Calculate $P(X \le 2, Y \le 4)$, formulate the marginal p.m.f. of X and Y, and evaluate $P(Y = 2 X = 1)$. Are X and Y independent?		
Q 9	The length of life of an instrument produced by a machine has a normal		
	distribution with a mean of 12 months and standard deviation of 2 months.		
	Calculate the probability that an instrument produced by this machine will last		
	(a) less than 7 months. (b) between 7 and 12 months.	10	CO1
	OR	10	CO3
	In a normally distributed data, 31% of the items are under 45, and 8% of the		
	items are over 64. Find the mean and variance of the distribution. Also		
	estimate the percentage of data (a) between 55 and 65 (b) between 45 and 60.		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	Random variables <i>X</i> and <i>Y</i> have joint continuous distribution with p.d.f.		
	$f_{XY}(x,y) = \begin{cases} c(2x+y), & \text{if } 0 < x < 1, 0 < y < 2\\ 0, & \text{otherwise} \end{cases}$	• •	000
	(a) Find the value of c . (b) Compute $E[X]$ and $E[Y]$. (c) Formulate	20	CO2
	(a) Find the value of c. (b) compute $E[X]$ and $E[T]$. (c) Formulate $E[X Y = y]$.		
Q 11	The data on heights of fathers and sons are given in the following table, where		
X	X is height of fathers and Y is height of son.		
	X 65 63 67 64 68 62 70 66 68 67		
	Y 68 66 68 65 69 66 68 65 71 67		
	Evaluate the coefficient of correlation for the following data by making a table.		
	Also construct a regression line and consequently predict the son's height for		
	father with height 72 inches.		
	OR	20	CO 2
	Suppose that the table given below represents the data on two random	20	CO3
	variables X and Y.		
	X 1 2 3 4 5 6 7		
	Y 9 8 10 12 11 13 14		
	Calculate the regression coefficient and obtain the lines of regression for the		
	following data. Then predict the Y value for $X = 4.5$. Also compute the		
	correlation coefficient of X and Y.		