Name: Enrolment No:			
Cours Progr Cours Instru 1) 2)	UPES End Semester Examination, May 2023 Real Analysis II : B.Sc. (H) Mathematics \& Int. B.Sc. M.Sc. Mathematics Code: MATH 2051 ions: Read all the below mentioned instructions carefully and follow them Mention Roll No. at the top of the question paper. Attempt all the parts of a question at one place only.	Semeste ne ax. Mark rictly:	hrs.
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Compute by Riemann integration $\int_{-1}^{1} f(x) d x$, where $f(x)=x^{2}$.	4	CO1
Q 2	Determine the interval of convergence of the power series $\sum\left\{(1 / n)(-1)^{n-1}(x)^{n}\right\}$.	4	CO3
Q 3	Give an example to show that the limit of integrals is not equal to the integral of limit.	4	$\mathrm{CO2}$
Q 4	Find the interval of absolute convergence for the series $\frac{x}{n}+\frac{x^{2}}{n^{2}}+\frac{x^{3}}{n^{3}}+$	4	CO
Q 5	Prove that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=n x e^{-n x^{2}}, x \geq 0$ is not uniformly convergent on $[0, k], k>0$.	4	$\mathrm{CO2}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Show that the function f defined as follows: $\begin{gathered} f(x)=\frac{1}{2^{n}}, \quad \text { when } \frac{1}{2^{n+1}}<x<\frac{1}{2^{n}}, \quad(n=0,1,2, \ldots) \\ f(0)=0 \end{gathered}$ is integrable on $[0,1]$, although it has an infinite number of points of discontinuity.	10	CO1
Q 7	Test uniform convergence for, the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=\frac{\sin n x}{\sqrt{n}}$, for $0 \leq x \leq 2 \pi$.	10	$\mathrm{CO2}$

Q 8	Show by integrating the series for $\frac{1}{(1+x)}$ that if $\|x\|<1$, then $\log (1+x)=$ $\sum_{n=1}^{\infty}\left\{(-1)^{n-1} / n\right\} x^{n}$.	10	CO3
Q 9	Find the radius of convergence of the series $\frac{1}{2} x+\frac{1.3}{2.5} x^{2}+\frac{1.3 .5}{2.5 .8} x^{3}+\cdots$. OR Find the radius of convergence of the series $x+\frac{1}{2^{2}} x^{2}+\frac{2!}{3^{3}} x^{3}+\frac{3!}{4^{4}} x^{4}+\cdots$	10	CO3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	i) If f and g are integrable on $[a, b]$ and g keeps the same sign over $[a, b]$, then there exists a number μ lying between the bounds of f such that $\int_{a}^{b} f g d x=\mu \int_{a}^{b} g d x$. ii) If a function is monotonic on $[a, b]$, then it is integrable on $[a, b]$.	20	CO1
Q 11	i) Let f_{n} be defined by $f_{n}(x)=1-\left\|1-x^{2}\right\|^{n}$, Test the uniform convergence of f_{n} in the domain $\left\{x:\left\|1-x^{2}\right\| \leq 1\right\}=[-\sqrt{2}, \sqrt{2}]$. ii) Let f_{n} be a sequence of functions defined on an interval I such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \quad \forall x \in[a, b] \quad$ and \quad let $\quad M_{n}=\operatorname{Sup}\left\{\mid f_{n}(x)-\right.$ $f(x) \mid: x \in[a, b]\}$.Then prove that $\left\langle f_{n}\right\rangle$ converge uniformly on $[\mathrm{a}, \mathrm{b}]$ if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$. OR i) Show that the sequence $\left\langle f_{n}\right\rangle$, where $f_{n}(x)=n x(1-x)^{n}$ is not uniformly convergent on closed interval [0,1$]$. ii) State and prove Cauchy's general principle of uniform convergence.	20	CO2

