Name: Enrolment No:			
Cours Progra Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023 Graph Theory Code: MATH 2025K UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023 Graph Theory B.Sc (Hons.) Mathematics \& Int B.Sc-M.Sc Mathematics Code: MATH 2025K ions: All questions are compulsory	ester: I e: 03 hr x. Mark	
$\begin{gathered} \text { SECTION A } \\ (5 Q x 4 M=20 M a r k s) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Consider the following graph and give at least one example of each of the following, if possible. (a) A path from a to d. (b) A path from a to d that include all the edges. (c) A path from a to d that include all the vertices. (d) A circuit	4	CO1
Q 2	Briefly explain the concept of degree in a directed graph and find the in-degree and out-degree of the following directed graph.	4	CO1
Q 3	Determine the number of vertices for the following graphs. (a) If graph G is Regular graph with 15 edges. (b) If graph G has 10 edges with 2 vertices of degree 4 and all others of degree 3 .	4	CO1
Q 4	Draw the following graphs (a) Cycle C_{4} (b) Wheel W_{5}	4	CO1

	(c) Complete Bipartite graph $K_{3,4}$ (d) Complete graph K_{6}		
Q 5	In an undirected graph, prove that the number of odd degree vertices is even.	4	CO3
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	(a) Draw the graph whose adjacency matrix is $A=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0\end{array}\right)$. (b) Find the incidence matrix of the following graph	10	CO1
Q 7	Define Hamiltonian and Euler's graphs with relevant examples. Also, draw a connected graph with at least four vertices which is neither Eulerian nor Hamiltonian.	10	CO 2
Q 8	Explain graph isomorphism and check whether the following graphs G and H are isomorphic or not.	10	CO1
Q 9	Using Kruskal's algorithm, find the minimal spanning tree of the following graph.	10	CO3

Q 11

