Name:

**Enrolment No:** 



**Semester: IV** 

Time: 03 hrs.

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

**Course: Strength of materials** 

Program: B.Tech Mechanical and ADE

Course Code: MECH 2012 Max. Marks: 100

Instructions: Attempt all the questions. Assume suitable data if missing.

## SECTION A (5Qx4M=20Marks)

|                    | (SQA+WI-20Wiai KS)                                                                                                                                                                   | ı     | 1   |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| Q No               | Statement                                                                                                                                                                            | Marks | CO  |  |
| Q 1                | A stepped bar as shown in figure is subjected to an axially applied load of 35 kN. Find the ratio of maximum and minimum stresses produced.  35 kN  2 cm  DIA  3 cm  DIA             | 4     | CO1 |  |
| Q 2                | Derive an expression of elongation in a conical rod hung upside down due to self-weight. Take the usual notations.                                                                   | 4     | CO1 |  |
| Q 3                | Enlist the assumption made in deducing the equation for shear stress produced in a circular shaft subjected to torsion.                                                              | 4     | CO1 |  |
| Q 4                | Differentiate thin cylinder with thick cylinder on the basis of dimensional attributes and stresses developed.                                                                       | 4     | CO1 |  |
| Q 5                | Discuss the analysis of shaft in series and parallel, subjected to pure torsional moments.                                                                                           | 4     | CO2 |  |
| SECTION B          |                                                                                                                                                                                      |       |     |  |
| (4Qx10M= 40 Marks) |                                                                                                                                                                                      |       |     |  |
| Q 6                | A member ABCD is subjected to point loads $P_1$ , $P_2$ , $P_3$ and $P_4$ as shown in figure. Calculate the force necessary $P_2$ for equilibrium of the member, assuming $P_1 = 45$ | 10    | CO2 |  |

|                   | kN, $P_3$ = 450 kN and $P_4$ = 130 kN. Determine the total elongation of the member, assuming the modulus of elasticity to be 2.1 x 10 <sup>5</sup> N/mm <sup>2</sup> .                                                                                                                                                                                                  |    |     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| Q 7               | Derive an expression for longitudinal and circumferential stresses developed in a thin cylinder of thickness t and internal diameter d, which is subjected to an internal pressure P.                                                                                                                                                                                    | 10 | CO2 |  |
| Q 8               | The shear force acting on a beam of rectangular cross-section at a point is F. Show that the maximum shear stress developed is 1.5 times the average shear stress.                                                                                                                                                                                                       | 10 | CO3 |  |
| Q 9               | Compare the torsional strength of a circular solid shaft with hollow shaft whose internal diameter is 2/3 of the outside diameter of same weight, same material, same length and same angle of twist.                                                                                                                                                                    |    |     |  |
|                   | OR                                                                                                                                                                                                                                                                                                                                                                       |    |     |  |
|                   | Two shafts of the same material and same lengths are subjected to the same torque. If the first shaft is of a solid circular section with 50 mm diameter and the second shaft is of hollow circular section, whose internal diameter is 3/4 of the outside diameter and the maximum shear stress developed in each shaft is the same, compare the weights of the shafts. | 10 | CO3 |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                          |    |     |  |
|                   | SECTION-C                                                                                                                                                                                                                                                                                                                                                                |    | 1   |  |
| (2Qx20M=40 Marks) |                                                                                                                                                                                                                                                                                                                                                                          |    |     |  |
| Q 10              | Draw the shear force and bending moment diagram for the beam loaded as shown in figure.                                                                                                                                                                                                                                                                                  | 20 | соз |  |

