

	A first order gas reaction $\mathrm{A}_{2} \mathrm{~B}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~A}_{(\mathrm{g})}$ at the temperature $400{ }^{\circ} \mathrm{C}$ has the rate constant $k=2.0 \times 10^{-4} \mathrm{~s}^{-1}$. What percentage of $\mathrm{A}_{2} \mathrm{~B}_{2}$ is decomposed on heating for 900 seconds?		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	(a) What do you understand by quantum yield of a photochemical reaction? Why do some reactions have high quantum yield whereas some others have very low value? What is the modified definition of Stark-Einstein law? (b) The resistance of a conductivity cell when filled with 0.02 M KCl solution is 164 ohms at 298 K . However, when filled with $0.05 \mathrm{M} \mathrm{AgNO}_{3}$ solution, its resistance is found to be 78.5 ohms. If specific conductivity of 0.02 M KCl is $2.768 \times 10^{-3} \mathrm{ohm}^{-1}$, calculate (i) The conductivity of $0.05 \mathrm{M} \mathrm{AgNO}_{3}$ (ii) The molar conductivity of AgNO_{3} solution	$10+10$	CO2
Q11	(a) Prove that degree of hydrolysis of a salt of weak acid and weak base is independent of the concentration of the solution Or Calculate the electrode potential of a copper wire dipped in 0.1 molar copper sulphate solution at $25^{\circ} \mathrm{C}$. At this temperature, the standard electrode potential of copper is 0.34 volt ($\mathrm{F}=96500$ coulombs; $\mathrm{R}=8.314 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$). Assume CuSO_{4} to be completely ionized and take the activity of copper ions equal to the molar concentration. (b) The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to NO_{2} and O_{2} is first order with a rate constant of 4.8×10^{-4} per second at $45^{\circ} \mathrm{C}$. (i) if the initial concentration is $1.65 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$, what is the concentration after 825 second? (ii) How long would it take for the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ to decrease to $1.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ from its initial value, given in (i)?	$10+10$	CO

