Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Wind Energy Technology Program: B Tech (RSEE) Course Code: EPEG2022 Semester : IV Time : 03 hrs. Max. Marks: 100

Instructions: Read the questions properly and try to answer in bullet points whereas applicable.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Derive the following:		
	Drag Force, Lift Force, Axial Force, Tangential Force, Solidity	4	CO1
Q 2	Differentiate between HAWT and VAWT with suitable examples.	4	CO1
Q 3	Explain the variation of the power output of a wind turbine with the tip speed of the rotor.	4	CO2
Q 4	Using the Betz model of a wind turbine, derive the expression for power extracted from the wind.	4	CO2
Q 5	Explain various designs of blades of VAWTs and their relative feature.	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	A HAWT has the following data:		
	Speed of wind 10 m/s at 1 atm and 15°C		
	Diameter of rotor = 120 m	10	CO3
	Speed of rotor 40 rpm		
	Calculate the maximum possible torque produced at the shaft.		

Q 7	Calculate the rotor radius for a wind turbine operating at a wind speed of		
	7 m/s to pump water at a rate of 5 m ³ /h with a lift of 6 m. Also, calculate		
	the angular velocity of the rotor. Use the following data:		
	the angular verocity of the fotor. Ose the following data.		
	Water density p-1000 kg/m, g-9.8 m/s, water pump efficiency 45%, the	10	CO3
	efficiency of the rotor to pump 80%, power coefficient, C, 0.25, tip speed		
	ratio, $2=1.1$, air density, 1.2 kg/m .		
Q 8	An aero-generator, installed at sea shore generates an output of 1200 W		
	at a wind speed of 6 m/s at a temperature of 27 °C. What will be the		
	output, if the same aero-generator is installed on the top of a hill where	10	CO4
	the temperature is 15 °C, pressure is 0.85 atmospheric, and wind speed	10	04
	is 8 m/s?		
0.0	Derive the expression of Axial Thrust on Turbine, F _A and Torque		
Q 9	-		
	Developed by the Turbine, T.		
	Or,	10	CO4
	Explain the working principle of the Wind Energy Conversion Systems		
	with the block diagram.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	What factors led to the accelerated development of wind power? What		
	do you understand by a gust?		
	Or,	20	CO5
	With the help of a diagram, discuss the power versus speed		
	characteristics of a Wind Turbine.		
Q 11	A propeller-type wind turbine has the following data:		
	Speed of free wind at a height of $10 \text{ m} = 12 \text{ m/s}$		
		20	CO5
	Air density= 1.226 kg/m^3		
	α=0.14		

Heigh	nt of tower=100 m
Diam	eter of rotor= 80 m
Wind	velocity at the turbine reduces by 20%
Gene	rator efficiency= 85%
1.	Find:
2.	Total Power available in the wind
3.	Power extracted by the turbine
4	Electrical power generated
5.	Axial thrust on the turbine
6	Maximum axial thrust on the turbine