Name: Enrolment No:			
Course: \quad Digital Electronics Semester: IV Program: B. Tech- Renewable \& Sustainable Engineering Time :03 Course Code: ECEG-2016 Max. Marks: 10 Instructions: Attempt all the sections.			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.	Attempt all the questions.	Marks	CO
Q 1	Simplify the following $\mathrm{Y}=(\mathrm{A}+\mathrm{B}) \overline{A B}$ and construct the logic diagrams using NAND gates.	4	CO1
Q2	Reduce the following function using K-map and identify the prime implicants and non- prime implicants in Product of Sum (POS) form. $\mathrm{f}=\sum m(2,3,6,7,10,11,12)$	4	CO2
Q3	How combinational circuit and sequential logic circuit is different from each other? What are the real-world applications and necessity in human life of both type circuits?	4	$\mathrm{CO3}$
Q4	Determine the resolution of (a) a 6-bit DAC and that of (b) a 12-bit DAC in terms of percentage.	4	CO4
Q5	A certain memory has a capacity of $8 \mathrm{~K} \times 16$. (a) How many data input and data output lines does it have? (b) How many address lines does it have?	4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Differentiate between a prime implicants and no-prime implicants. Also, minimize the following multiple output functions using K-map: $\begin{aligned} & \mathrm{f}_{1}(A, B, C, D)=\sum m(1,2,3,5,7,8,9)+d(12,14) \\ & \mathrm{f}_{2}(A, B, C, D)=\sum m(0,1,3,4,6,8,9)+d(10,11) \\ & \mathrm{f}_{3}(A, B, C, D)=\sum m(1,3,5,7,8,9,12,13)+d(14,15) \end{aligned}$	2+8	CO1
Q7	Obtain the minimal expression for $\mathrm{f}=\sum m(1,2,3,5,6,7,8,9,1213,15)$ using the Tabular (Quine- Mc-Cluskey) method.	8+2	CO2
Q8	Design and analyze the operation of 8-4-2-1 binary coded decimal (BCD) to 7-segment decoder.	10	$\mathrm{CO3}$

Q9	The 2125 A is a static RAM IC that has a circuitry of 1 Kx 1 , one activeLOW chip select, and separate data input and output. Show how to combine several 2125A ICs to form a 1 Kx 8 module.	10	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Design and analyze the 3-bit Gray code counter using the T-flip flop. Implement the state diagram and logic diagram (using basic logic gates and flip-flops) to understand the operation. Write the suitable application of it also. OR Implement a 3-bit ripple counter using D flip-flops. Also, draw and analyze timing diagram considering the propagation delay (no skipping states)	20	CO 4
Q11	Attempt all the parts: (a) Elucidate the (i) dynamic and static memory (ii) Magnetic memory (b) It is desired to combine several $1 \mathrm{~K} \times 8 \mathrm{PROMs}$ to produce a total capacity of $4 \mathrm{~K} \times 8$. How many Chips are required? Design and analyze the arrangement.	6+14	$\mathrm{CO5}$

