Name: Enrolment No:			
UPES Examination, May 2023			
Course: Theory of Machines Program: B.Tech - Mechatronics Course Code: MECH 2013	Theory of Machines Semest m: B.Tech - Mechatronics Time: Code: MECH 2013 Max.		
Instructions: Assume suitable data. Attempt graphical questions on A3 sheets provided. Q 9 and Q 11 have internal choices.			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain the term undercutting as applicable to gears.	4	CO1
Q 2	Differentiate between Whitworth quick return mechanism and Crank and Slotted lever mechanism.	4	CO1
Q 3	Explain in brief the application of cam and follower arrangement in any three machines.	4	CO1
Q 4	Discuss different follower according to shape.	4	CO1
Q 5	Explain Coriolis acceleration component with examples of mechanisms where it is applicable.	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	The addendum on each wheel of two mating gears is to be such that the line of contact on each side of the pitch point is half the maximum possible length. The number of teeth on the two gears is 24 and 48 . The teeth are of 20° pressure angle involute with a module of 12 mm . Determine the addendum for the pinion and the gear. Also, determine the arc of contact and contact ratio.	10	CO 3
Q 7	Each wheel of a four-wheeled rear engine automobile has a moment of inertia of $2.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and an effective diameter of 600 mm . The rotating parts of the engine have a moment of inertia of $1.25 \mathrm{~kg} . \mathrm{m}^{2}$. The gear ratio of the engine to the back wheel is 3.2. The engine axis is parallel to the rear axle and the crankshaft rotates in the same sense as the road wheels. The mass of the vehicle is 2050 kg and the centre of the mass is 520 mm above the road level. The track width of the vehicle is 1.6 m . Determine the limiting speed of the vehicle around a curve with 120 m radius so that all the four wheels maintain contact with the road surface.	10	CO 3
Q 8	In a compound epicyclic gear train as shown in the figure, gear A and an annular gears $\mathrm{D} \& \mathrm{E}$ are free to rotate on the axis P, B and C is a compound gear rotate about axis Q. Gear A rotates at 90 rpm CCW and gear D rotates at 450 rpm CW . Determine the speed and direction of rotation of arm F and gear E. Gears A, B	10	CO4

