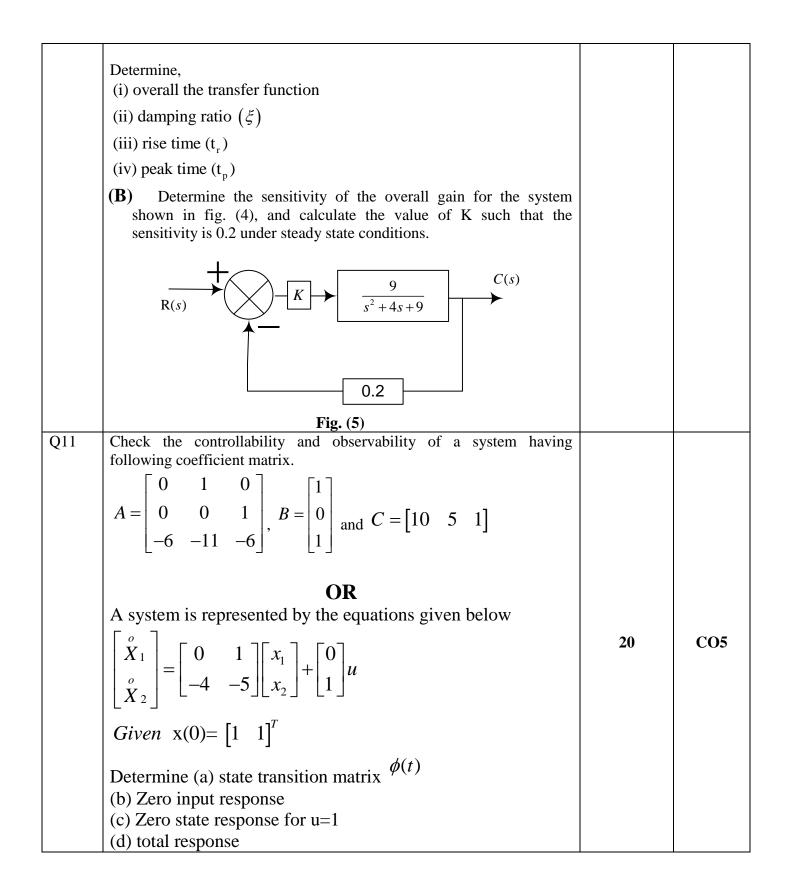
Name:

Enrolment No:


UPES End Semester Examination, May 2023

Course: Instrumentation & Control Program: B. Tech- Mechatronics Course Code: ECEG-2041 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the sections.

SECTION A (5Qx4M=20Marks)				
S. No.	Attempt all the questions.	Marks	СО	
Q 1	Analyze the operation of microprocessor based control system with the suitable automotive industrial application.	4	CO1	
Q2	Differentiate the linear translational and rotational mechanical system with mathematical modeling to determine the transfer function.	4	CO2	
Q3	Determine the overall transfer function relating the output and input for a system represented by Fig (1). Use block diagram reduction method. $R + G_1 + G_2 + G_3 + G_4 + C_4$ $H_1 + H_2 + H_2$ Fig. (1)	4	CO3	
Q4	Analyze the (i) settling time (ii) steady state error for transient response of second order control system.	4	CO4	
Q5	Draw the state model and state space representation of the given transfer function $\frac{Y(S)}{U(S)} = \frac{1}{(s+2)} \cdot \frac{1}{(s+3)} \cdot \frac{1}{(s+4)}$	4	CO5	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Analyze and sketch the diagrams of the mechanical devices used as primary detectors as, (i) Helical bourdon tube (ii) Spiral tube (iii) cantilever. Also, write mathematical analysis when applied pressure to deform the original positions.	3+7	CO1	
Q7	Analyze the Resistance temperature detector (RTD) and compare it with the thermocouple transducers based on temperature measurement	8+2	CO2	

	ranges and active/passive nature/category of transducers. Also sketch the diagrams for both transducers.		
Q8	The signal flow graph (SFG) is shown in Fig (2). Determine the transfer function using Mason's gain method. $R = G_1 = G_2 = 1$ $-H_1 = -H_2$	10	CO3
Q9	Fig. (2) Obtain the state transition matrix in the form of e^{At} and determine the time response for the system, X = Ax $A = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix}$ and $x_1(0) = 1$, $x_2(0) = 1$ Where OR The transfer function of a system is given below, $\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 2}{s^3 + 9s^2 + 26s + 24}$, Determine the state model, use direct decomposition method.	10	CO5
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Attempt both the parts (A) The block diagram of a unity feedback control system is shown in Fig (3) as, $H = \frac{20}{(s+1)(s+5)}$ $Fig. (3)$	10+10	CO4

