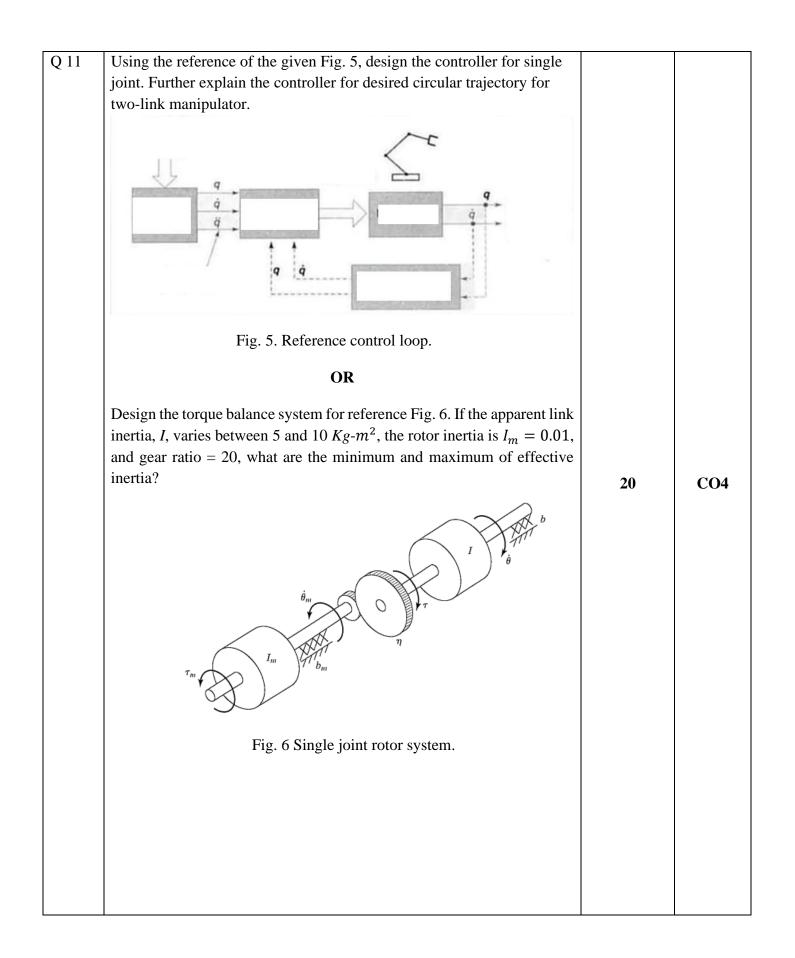
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course:B.Tech MechatronicsProgram:Robotics and ControlCourse Code:ECEG2040P


Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. Scientific calculator is allowed.

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	Draw the workspace of the (SCARA) Robot?	4	CO1		
Q 2	Differentiate between Joint space and Cartesian space trajectory?	4	CO1		
Q 3	Why critically damped system is preferred over other systems in terms of performance of controller?	4	CO2		
Q 4	Consider the 3R manipulator of Fig. 1. Derive the forward kinematic equations using the DH-convention.	4	CO2		
Q 5	Derive the linear and Angular acceleration relation for rigid body?	4	CO1		
	SECTION B (4Qx10M= 40 Marks)		1		
Q6	(4Qx10M= 40 Marks)Draw the D-H table and obtain the forward kinematic model of threeDOF (RPP) manipulator arm shown in Fig. 2.	10	CO3		

	Fig. 2: RPP manipulator arm		
Q 7	Compute the velocity of the tip of the arm as a function of joint velocities? $\overbrace{(y_3)}^{(3)} \overbrace{(y_3)}^{(1)} \overbrace$	10	CO3
Q 8	Find the coefficients of a cubic that accomplishes the motion and brings the manipulator to rest at the goal. The motion is "A single link robot with a rotary joint is motionless at $\theta = 25$ degrees. It is desired to move the joint in a smooth manner to $\theta = 75$ degrees in 5 seconds".	10	CO4

Q 9	A certain 2 link manipulator, derive the relation for the Jacobian with respect to the base? For the configuration of the robot having joint angles θ =[40°, 20°] with the and dimension are $L_1 = 2 m, L_2 = 2 m$ find the torques required at the joints in order hold a static force vector $0_F = 15\hat{\iota} + 6\hat{j} + 0\hat{k}$. OR Design the control equations for PID controller?	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Design the dynamic equation of motion for two-link manipulator? $ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	20	CO3

