Name: Enrolment No:			
Cours Progra Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY ST End Semester Examination, May 2023 B.Tech Mechatronics Robotics and Control Code: ECEG2040P ions: All questions are compulsory. Scientific calculator is allowed.	S mester: ne: 03 h ax. Mar	
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 M=20 \text { Marks }) \end{gathered}$			
S. No.		Marks	CO
Q 1	Draw the workspace of the (SCARA) Robot?	4	CO1
Q 2	Differentiate between Joint space and Cartesian space trajectory?	4	CO1
Q 3	Why critically damped system is preferred over other systems in terms of performance of controller?	4	CO2
Q 4	Consider the 3R manipulator of Fig. 1. Derive the forward kinematic equations using the DH -convention. Fig. 1. Schematic diagram of the RRR Manipulator.	4	CO2
Q 5	Derive the linear and Angular acceleration relation for rigid body?	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q6	Draw the D-H table and obtain the forward kinematic model of three DOF (RPP) manipulator arm shown in Fig. 2.	10	CO3

	Face Plate		
Q 7	Compute the velocity of the tip of the arm as a function of joint velocities? Fig. 3. Schematic diagram of the $2 R$ Manipulator.	10	CO 3
Q 8	Find the coefficients of a cubic that accomplishes the motion and brings the manipulator to rest at the goal. The motion is "A single link robot with a rotary joint is motionless at $\theta=25$ degrees. It is desired to move the joint in a smooth manner to $\theta=75$ degrees in 5 seconds'".	10	CO4

Q 9	A certain 2 link manipulator, derive the relation for the Jacobian with respect to the base? For the configuration of the robot having joint angles $\boldsymbol{\theta}=\left[40^{\circ}, 20^{\circ}\right]$ with the and dimension are $L_{1}=2 m, L_{2}=2 \mathrm{~m}$ find the torques required at the joints in order hold a static force vector $0_{F}=15 \hat{\imath}+6 \hat{\jmath}+0 \hat{k}$. OR Design the control equations for PID controller?	10	CO2
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	Design the dynamic equation of motion for two-link manipulator? Fig. 4. Schematic diagram of the 2 R Manipulator	20	$\mathrm{CO3}$

