Name: Enrolment No:			
Course: Analog and Digital Electronics Program: B.Tech Mechatronics Course Code: ECEG 2030		Semester: IITime : 03 hrs.Max. Marks: 100	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1.	Write about the classification of multistage amplifiers.	4	CO1
Q2.	Draw the construction of 555 timer and indicate the pins.	4	CO2
Q3.	Define CMRR. Determine the output voltage for the OP-amp if $\mathrm{v}_{\text {in } 1}=5 \mathrm{~V}$ and $V_{\text {in } 2}=7 \mathrm{~V}$ and Gain $\mathrm{A}=200000$.	4	$\mathrm{CO3}$
Q4.	Obtain the dual and complement of the following Boolean expression. $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$ Write about the self-complementing codes and its significance.	4	$\mathrm{CO4}$
Q5.	Write the difference between latch and flip-flop. Draw the diagram of RSLatch using NOR-NOR gates.	4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6.	Discuss Class A amplifier's design and list out the advantages and disadvantages.	10	CO1
Q7.	Consider a 555 timer as astable multi-vibrator. For $\mathrm{R}_{\mathrm{A}}=6.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=3.3$ $\mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$, calculate (a) $\mathrm{t}_{\text {high }}$, (b) $\mathrm{t}_{\text {low }}$ (c) free running frequency and (d) duty cycle [where $t_{\text {high }}, \& t_{\text {low }}$ are the time duration of Logic High and Logic Low]	10	$\mathrm{CO2}$
Q8.	(a)Simplify the logic function $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,5,8,9,10,15)$ using K-Map and realize with NAND GATES . (b)Construct a hamming code for data string 1101, using even parity.	5+5	$\mathrm{CO3}$

	Locate the error if during receiving the message there was error at $5^{\text {th }}$ position.		
Q9.	Define data selector. Design a 16×1 multiplexer using 4×1 multiplexers only.	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	a)Design a combinational circuit which implements the function $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(0,2,5,7,9,11,12,13,17,19,22,28,29$,$) using$ multiplexer b) Implement logic functions $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,7,9,11,13)$; $F_{2}(A, B, C, D)=\Sigma m(0,2,7,9,11,13)$ using decoder	10+10	CO4
Q11	(a)Write about the types of triggering in the sequential circuits. (b)Design a mod-10 synchronous counter using T Flip Flop OR (a)Elucidate the following Shift Registers, (i) Parallel In Serial Out (ii) Serial In Serial (b)Design a Ripple counter using T Flip Flop with clock time period as 15 sec and with edge triggering.	6+14	$\mathrm{CO5}$

