Name:

Enrolment No:

UPES End Semester Examination, May,2023

Course:Analog Electtronics-II Program: B.Tech ECE Course Code:ECEG 2014

Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Explain with the help of a schematic diagram the operation of a single loop feedback amplifier	4	CO2
2	Find the frequency of operation of a phase shift oscillator.	4	CO1
3	Explain the frequency response of a crystal	4	CO1
4	Define the output offset voltage and input offset current of opamp.	4	CO4
5	Find the expression for power output for a large signal class A amplifier.	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Find the expression for second harmonic distortion for a large signal Class A amplifier	10	CO3
7	How impedance matching is performed in the transformer coupled audio power amplifier? Find the expression for conversion efficiency for such amplifier.	10	CO3
8	 a) Design a low pass filter at a cutoff frequency of 1 KHz at a pass band gain of 2. b) Using IC 741, design an noninverting amplifier with three inputs for acting as an averaging amplifier. 	10	CO4
9	Explain a differential instrumentation amplifier using a transducer bridge. How will you convert the above circuit into a temperature controller?	10	CO4

SECTION-C (2Qx20M=40 Marks)				
Re=4k, R'=40 What type of f a)Avf b)Rif c)Rof	gram given below has the following parameters: k,Rs=10k, hie=1.1k, hfe=50, and hre =hoe=0. edback is this? Find V_{C} R_{e}	20	CO2	
 with DC supply voltage b) Explain a successive a) Design a triange V. The Opamp 	we oscillator so that fo=1 KHz. Select a 741 opamp ges ± 15 V. we approximation analog to digital converter. OR gle wave generator so that f ₀ =2 KHz and v0(pp)=7 o is a 1458/772 and supply voltage= ± 15 V. nostable 555 timer and find the expression for time	20	CO4	