Name: Enrolment No:			
Course:Analog Electtronics-II Program: B.Tech ECE Course Code:ECEG 2014		$\begin{aligned} & \text { Semester: IV } \\ & \text { Time : } 03 \text { hrs. } \\ & \text { Max. Marks: } 100 \end{aligned}$	
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Qx} 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain with the help of a schematic diagram the operation of a single loop feedback amplifier	4	CO2
2	Find the frequency of operation of a phase shift oscillator.	4	CO1
3	Explain the frequency response of a crystal	4	CO1
4	Define the output offset voltage and input offset current of opamp.	4	CO4
5	Find the expression for power output for a large signal class A amplifier.	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Find the expression for second harmonic distortion for a large signal Class A amplifier	10	$\mathrm{CO3}$
7	How impedance matching is performed in the transformer coupled audio power amplifier? Find the expression for conversion efficiency for such amplifier.	10	$\mathrm{CO3}$
8	a) Design a low pass filter at a cutoff frequency of 1 KHz at a pass band gain of 2 . b) Using IC 741 , design an noninverting amplifier with three inputs for acting as an averaging amplifier.	10	CO4
9	Explain a differential instrumentation amplifier using a transducer bridge. How will you convert the above circuit into a temperature controller?	10	CO4

$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q 10	The circuit diagram given below has the following parameters: Re=4k, $R^{\prime}=40 k, R s=10 k$, hie $=1.1 \mathrm{k}$, hfe $=50$, and hre $=h o e=0$. What type of feedback is this? Find a)Avf b)Rif c) Rof $^{\prime}$	20	CO 2
Q11	a) Design a square wave oscillator so that fo $=1 \mathrm{KHz}$. Select a 741 opamp with DC supply voltages $\pm 15 \mathrm{~V}$. b) Explain a successive approximation analog to digital converter. OR a) Design a triangle wave generator so that $\mathrm{f}_{0}=2 \mathrm{KHz}$ and $\mathrm{v} 0(\mathrm{pp})=7$ V. The Opamp is a $1458 / 772$ and supply voltage $= \pm 15 \mathrm{~V}$. b) Describe a Monostable 555 timer and find the expression for time constant.	20	CO4

