Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Signals and Systems

Program: B. Tech Electrical Engg. Course Code: ECEG 2045 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	The signals $x_1(t) = 10\cos(100\pi t)$ and $x_2(t) = 10\cos(50\pi t)$ are both sampled with $f_s = 75$ Hz. Show that the two sequences of samples so obtained are identical.	4	CO1
Q 2	Explain the following signals with the neat sketches (i)Unit step (ii)Unit ramp (iii)Unit impulse (iv)Exponential (v)Even and odd	4	CO1
Q 3	Determine and sketch the magnitude and phase response of the LTI causal system described by the differential equations $\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - x(t)$	4	CO2
Q 4	What is the relation between laplace transform and fourier transform?	4	CO2
Q 5	What is the condition for Z Transform the exist?	4	CO4
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Find (a) bilateral Laplace transform and (b) unilateral transform of the signal $x(t) = e^{-a(t+1)}u(t+1)$	10	CO3

Q 7	Use the Laplace transform method for determining i(t) in the below shown figure, t ≥ 0 .Assume that the current i(t) through the inductor at t=0 is 2 amperes. and v(t)= $e^{-t}u(t)$	10	CO3
Q 8	Find the exponential Fourier series and sketch the corresponding Fourier spectrum Xn versus w for the full-wave rectified sine wave as shown. $x(t) = A\sin(t) $ A A -2π $-\pi$ 0 π 2π 3π t	10	CO2
Q 9	Determine whether the following signals are power or energy signals or neither. (a) $x(t) = e^{-a t }$ (b) $nu(n)$ ORDetermine the z transform of the anticausal signal $x(n) = a^n u$ (-n-1) and depict the ROC and the locations of poles and zeros in the z plane.	10 10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	A causal discrete time LTI system is described by $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$ Where x(n) and y(n) are the input and output of the system, respectively (a) Determine the system function H(z) for a causal system function. (b) Find the impulse response h(n) of the system.	20	CO2

