Name: Enrolment No:			
Course: Signals and Systems Program: B. Tech Electrical Engg. Course Code: ECEG 2045 Instructions:		S ester: IV : 0 Marks: 1	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	The signals $x_{1}(t)=10 \cos (100 \pi t)$ and $x_{2}(t)=10 \cos (50 \pi t)$ are both sampled with $\mathrm{f}_{s}=75 \mathrm{~Hz}$. Show that the two sequences of samples so obtained are identical.	4	CO1
Q 2	Explain the following signals with the neat sketches (i)Unit step (ii)Unit ramp (iii)Unit impulse (iv)Exponential (v)Even and odd	4	CO1
Q 3	Determine and sketch the magnitude and phase response of the LTI causal system described by the differential equations $\frac{d y(t)}{d t}+y(t)=\frac{d x(t)}{d t}-x(t)$	4	CO 2
Q 4	What is the relation between laplace transform and fourier transform?	4	CO 2
Q 5	What is the condition for Z Transform the exist?	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Find (a) bilateral Laplace transform and (b) unilateral transform of the signal $x(t)=e^{-a(t+1)} u(t+1)$	10	CO 3

Q 7	Use the Laplace transform method for determining $\mathrm{i}(\mathrm{t})$ in the below shown figure, $\mathrm{t} \geq 0$.Assume that the current $\mathrm{i}(\mathrm{t})$ through the inductor at $\mathrm{t}=0$ is 2 amperes. and $\mathrm{v}(\mathrm{t})=e^{-t} u(t)$	10	CO 3
Q 8	Find the exponential Fourier series and sketch the corresponding Fourier spectrum Xn versus w for the full-wave rectified sine wave as shown.	10	CO 2
Q 9	Determine whether the following signals are power or energy signals or neither. (a) $\mathrm{x}(\mathrm{t})=e^{-a \mid k}$ (b) $n u(n)$ OR Determine the z transform of the anticausal signal $x(n)=a^{n} u(-n-1)$ and depict the ROC and the locations of poles and zeros in the z plane.	10	CO1
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	A causal discrete time LTI system is described by $\mathrm{y}(\mathrm{n})-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)$ Where $x(n)$ and $y(n)$ are the input and output of the system, respectively (a) Determine the system function $\mathrm{H}(z)$ for a causal system function. (b) Find the impulse response $h(n)$ of the system.	20	CO 2

	(c) Find the step response of the system		
Q 11	An LTI system is characterized by the system function $H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$ Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions: (a) The system is causal and unstable (b) The system is noncausal and stable OR Find the response of the circuit as shown in figure 1 for the input $X(t)=r(t)-2 r(t-1)+r(t-2)$ Figure 1	20	CO 4 CO 3

