Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Electromagnetic fields theory Program: B. Tech Electrical Course Code: ECEG 2007

Semester: IV Time: 03 hrs. Max. Marks: 100

SECTION A

S. No.		Marks	CO
Q 1	Derive the Poisson's equation using Gauss's law.	04	CO2
Q 2	Find the gradient and Laplacian in the scalar field quantity: $W = 10r \sin^2 \theta \cos \phi$.	04	C01
Q 3	A parallel plate capacitor with a plate area of 5 cm ² and plate separation of 3 mm has a voltage 50 sin 10 ³ t V applied to its plates. Calculate the displacement current by assuming $\in = 2 \in_{0}$.	04	CO2
Q 4	Derive the expression for skin depth of a conducting medium.	04	CO3
Q 5	Two-point charges $-4\mu C$ and $5\mu C$ are located at (2, -1, 3) and (0,4, -2) resp. Find the potential at (1,0,1) assuming zero potential at infinity.	04	CO2
	SECTION B		
Q 6	Given that $D = z\rho cos^2 \emptyset \ a_z \ C/m^2$, calculate the charge density at $(1, \frac{\pi}{4}, 3)$ and the total charge enclosed by the cylinder of radius 1 m with $-2 \le z \ge 2$ m.	10	CO1
Q 7	Analyze the behavior of two medium and then develop the boundary conditions for the electric field at a boundary between the conductor-dielectric materials.	10	CO5

Q 8	A conducting bar can slide freely over two conducting rails as shown in the figure below. Calculate the induced voltage in the bar:		CO3
	(i) If the bar slides at a velocity $u=20a_y$ m/s and $B=4\cos 10^6 t a_z$ mWb/m ² (ii) If the bar slides at a velocity $u=20a_y$ m/s and $B=4\cos 10^{6}t a_z$ mWb/m ²		
	$\frac{1}{mWb/m^2}$	10	
	OR	10	
	Determine "H" at (0,0,4) due to side 3 of the given triangular loop. The conducting triangular loop carries a current of 10 A.		
Q 9	State Ampere's Circuit law and derive the expression for infinity long coaxial transmission line using Ampere's Circuit law.	3+7	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	A metal bar of conductivity σ is bent to form a flat 90° sector of inner radius a, outer radius b and thickness t. Show that: (i) The resistance of the bar between the vertical curved surfaces at $\rho = a \text{ and } \rho = b \text{ is } R = \frac{2 \ln \frac{b}{a}}{\sigma \pi t}$ (ii) The resistance between the two horizontal surfaces at z=0 and z=t is $R' = \frac{4t}{\sigma \pi (b^2 - a^2)}$ OR a) Explain the term lossy dielectric and deduce the expression for the wave propagating in lossy dielectrics. b) A lossy dielectric has an intrinsic impedance of 200< 30° at a particular	20	CO4
	radian frequency ω . If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component:		

	H=10 $e^{-\alpha x} \cos(\omega t - 0.5x) a_y A/m$. Find E and α .		
Q 11	Two extensive homogeneous isotropic dielectrics meet on plane z=0. For z>0, $\epsilon_{r1}=4$ and for z<0, $\epsilon_{r2}=3$. A uniform electric field $E_1 = 5a_x - 2a_y + 3a_z$ kV/m exists for z \geq 0. Find: i) E_2 for z \leq 0. ii) The angle E_1 and E_2 make with the interface. iii) The energy densities (in J/m ³) in both dielectrics. The energy within a cube of side 2 m centered at (3, 4, -5)	20	CO5