Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Surveying and Geomatics Program: B Tech Civil Engineering Course Code: CIVL 2018 Semester: IV Tim: 03 hrs. Max. Marks: 100

Instructions: Assume the suitable values wherever required

Attempt all the questions.

SECTION A (5Qx4M=20Marks)

	I		(50	A71VI-2(Jiviai KS)				1
S. No.								Marks	CO
Q 1	a) Plane and geod b) Level line and	etic su	•					4	C01
Q 2	The following perpend irregular boundary:	licular	offsets w	vere take	en from a	a chain l	ine to an		
	Chainage (m)	0	30	60	90	120	150		CO3
	Offset lengths (m)	0	2.65	3.80	3.75	4.65	3.60	4	CO2
	Calculate the area betw	veen th	e chain li	ne and t	he irregu	ılar bour	ıdary.		
Q 3	A surveyor standing on his eye at a height of 12 Calculate the distance	2 m. Tl	he top of t	the lightl	nouse is	72 m abo	-	4	CO1
Q 4	Explain the various free example.	iled ch	ecks in t	riangula	tion wit	the he	elp of an	4	CO3
Q 5	A circular curve has a (i) Apex distance, and (ii) Mid-ordinate. (As					angle. C	alculate:	4	CO4
				SECTIC			I		
			(4Qx	10M= 4	0 Marks	s)			
Q 6	A railway embankmen transverse to the centre length by trapezoidal r The centre heights at 2 m, 3.0 m, 2.2 m.	e line. (ule and	Calculate 1 prismoi	the volu d rule, if	the side	ained in slope is	a 100 m 1.5:1.	10	CO2

Q 7	For the g data stru						e correspon rid	ding raster		
Q 8	Determin		Built-u 'area	from a	-		-	Q from the	10	CO1
		e consta	ant of th		ment wa		nd the staf	n anallactic f was held eadings	10	C03
	statio		P Q	130° 220°	⊥ + 1(0°32′ 5°06′	(i 1.255, 1.8	m) 310, 2.365 120, 2.940		
		1	α	220	- T V	OR	1.500, 2.	120, 2.340		
Q 8		essible b	ouilding	if you ar	e given a	tape an	d a theodol	ne height of ite? Draw a	10	CO3
Q 9		e missir	ng quanti					e following		
	Station	BS	IS	FS	Rise	Fall	RL	Remarks		
	1	3.125					?	BM	10	CO1
	2	?		?	1.325		125.505	ТР	_•	
	3		2.320			0.055	?			
	4		?		?		125.850	+		

	5	?		2.625	?		?	ТР		
	6	1.620		3.205	2.1	65	?	ТР		
	7		3.625		?		?			
	8			?			123.090	ТВМ		
					SECTIC Qx20M=4					
Q 10	10 m for pegg a) (b) (c) (center. T ing out t Offsets fr Offsets fr Offsets fr	The defle he curve rom long rom tang rom tang	eurve of rad ection angle by each o	ius 100 m v e is 60°. Dr f the follow l) ndicular)	vith p raw u	pegs at app up the data	proximately a necessary	6+4+4+6	CO4
					OR					
Q 10	was fou therefore R was for angle QI for settin	nd to be e selected ound to b RS 148°2 ng out a 2	inacces d two or be 122.2 22'2'', d 200 m ra	ssible. Fou n each strai 0 m. If the raw up a ta	r points P, ght, and th angle PQR ble of defle by pegs dri	Q, e dis was ectior	R, S (see stance betv s 169°47'4 n angles ar	vo straights Fig.) were veen Q and 0'' and the nd chainage 0 m through	20	CO4
Q11					aken in a c	losed	l compass	traverse:		
	Line	FB S37°3		BB N37°30'W	,					
	BC	S43°1:	5'W	N44°15'E					40.40	~~~
	CD	N73°0	0'W	S72°15' Е					10+10	CO1
	DE	N12º4	5'E	\$13°15'W						
	EA	N60°0	00'E	S59°00'W						
	Comput	e the inte	erior ang	gles and con	rect them f	f <u>or o</u> l	<u>bservatio</u> n	al errors.		

contour line with one or more higher ones inside it represents a hill.
--