Name: Enrolment No:	EPES		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, MAY 2023 Course: Introduction to Solid Mechanics Semester: IV Program: B. Tech (Civil Eng) Code CIVL 2017 Time: 03 hrs. Max. Marks: 100			
S. No.		Marks	CO
Q. 1	Mention the relationship between elastic constants.	4	CO1
Q. 2	Explain the terms torsional rigidity \& polar modulus of shaft.	4	CO2
Q. 3	Write bending equation with all notations.	4	CO3
Q. 4	Explain the relationship between volumetric strain, hoop strain \& longitudinal strain.	4	CO4
Q. 5	Explain the practical significance of SFD \& BMD.	4	CO3
SECTION B			
Q. 6	A steel rod 500 mm long 20 mm diameter is subjected to an axial tensile load of 50 kN . Determine (1) Stress (2) Strain (3) Elongation (4) Lateral Strain (5) Change in Diameter. Take $E_{S}=2 \times 10^{5} \& 1 / \mathrm{m}=0.25$	10	CO1
Q. 7	A shaft rotates at 150 rpm and transmits a power of 300 kW . The diameter of the shaft is 100 mm . The maximum torque is 25% more than mean torque. What is the magnitude of torsional shear stress and the twist. The length of the shaft is 1.5 m Given $\mathrm{C}=85 \mathrm{Gpa}$.	10	CO2
Q. 8	A steel penstock of 1.2 m diameter \& 12 mm thickness subjected to 120 m head of water. Determine the hoop stress \& longitudinal stress at the bottom of the penstock.	10	CO2
Q. 9	A rod of diameter 110 m and 1 m long subjected to pull of 210 kN in the direction of its length. The extension of the rod was found to be 0.13 mm , while the decrease in diameter was 0.005 mm . Find the young's modulus, Poisson's ratio, modulus of elasticity \& bulk modulus for the material of the rod. OR A metallic bar of the length of 230 mm , width 25 mm \& thickness of 18 mm subjected to an axial compressive load of 250 kN . The decrease in length is 0.4 mm \& increase in width is 0.03 mm . Determine the Poisson's ratio \& young's modulus of bar.	10	CO1
SECTION-C			
Q. 10	A beam of 6 m span simply supported at the ends carries a UDL of $22 \mathrm{kN} / \mathrm{m}$ over the right half of the beam and a point load of 42 kN at 1.5 m from the left support. Determine the position and magnitude of Maximum B.M. draw SFD \& BMD for the beam	20	CO 3

Q.11	Determine the shortest length "L" for the pin-ended steel column having a cross- section of 70mm X 110mm for which Euler's formula applies. Take E = 2.2 X $10^{5} \mathrm{Mpa}$ \& critical proportional limit is 240Mpa OR		
Determine the ratio of buckling length of the two columns of circular section, one hollow \& other solid. When both are made of same material, having the same length, cross-sectional area \& end conditions. The internal diameter of hollow column is half of external diameter	$\mathbf{2 0}$	$\mathbf{C O 4}$	

