Name: Enrolment No:			
Cours Progr Cours Instru Attem	UPES End Semester Examination, May 2023 Introduction to Fluid Mechanics : B Tech Civil Engineering Code: CIVL 2016 ions: Assume the suitable values wherever required all the questions.		
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Compare the viscosity vs time curve for a) Honey b) Blood	4	CO1
Q 2	With the help of an illustrative example, explain the situation where path lines, streak lines and streamlines will be identical.	4	CO2
Q 3	Why is the diverging section of the venturimeter kept more than the converging section?	4	$\mathrm{CO3}$
Q 4	A $\frac{1}{25}$ model of a ship is to be tested for estimating the wave drag. If the ship's speed is $1 \mathrm{~m} / \mathrm{s}$, calculate the speed at which the model must be tested.	4	$\mathrm{CO4}$
Q 5	Form a dimensionless group from the variables ρ (density), ω (angular velocity), μ (dynamic viscosity) and D (characteristic diameter).	4	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	The velocity distribution of flow over a plate is parabolic, with the vertex 30 cm from the plate where the velocity is $280 \mathrm{~cm} / \mathrm{s}$. If the fluid's viscosity is $2 \mathrm{Ns} / \mathrm{m}^{2}$, find the velocity gradients and the shear stresses at 0,20 and 40 cm from the plate.	10	CO1
Q 7	A circular plate 3 m in diameter is immersed in water, its greatest and least depth below the free surface being 3 m and 1 m , respectively. Find the total pressure on one face of the plat and its position.	10	$\mathrm{CO1}$
Q 8	What is the principle behind the working of a venturimeter? Give constructional details and derive an expression for the measurement of the discharge.	$2+3+5$	$\mathrm{CO3}$
OR			

Q 8	A venturimeter of 50 mm throat diameter is fitted in a horizontal pipe of 100 mm diameter. The pressure difference between the pipe and the throat is 100 KPa , and water flows through the pipe. Find the velocity in the pipe.	10	$\mathrm{CO3}$
Q 9	A 10 cm diameter orifice discharges water at 55 litres per second under a head of 2.5 m . A plate is held normally to the jet d / s from the vena contracta requiring a force of 300 N to resist the impact of the jet. Find the hydraulic coefficients.	10	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Work out the equation for discharge Q through a sharp-edged triangular notch assuming Q depends upon the central angle α of the notch, head H, gravitational acceleration g and the density ρ, viscosity μ, and surface tension σ of the fluid. Use Buckingham theorem.	20	$\mathrm{CO4}$
OR			
Q 10	A test was made on a pipe model 25 mm in diameter and 5 m long with water flowing through it at the corresponding speed for frictional resistance. The head loss was found by measurement to be 10 m of water. The prototype pipe is 100 mm in diameter and 100 m long, flowing air at $3.0 \mathrm{~m} / \mathrm{s}$. The density of water and air is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. And the viscosity coefficients of water and air are 0.01 and 1.8×10^{-4} poise, respectively. Find a) The corresponding speed of water in the model pipe for the dynamic similarity b) Pressure drop in prototype pipe.	15+5	$\mathrm{CO4}$
Q 11	The velocity components in a 2-D flow field for an incompressible fluid are expressed as $\begin{aligned} & u=\frac{y^{3}}{3}+2 x-x^{2} y \\ & v=x y^{2}-2 y-\frac{x^{3}}{3} \end{aligned}$ a) Show that the functions represent a possible case of an irrotational flow. b) Obtain an expression for stream function. c) Obtain an expression for velocity potential.	6+8+8	CO2

