Name: Enrolment No:			
Progr Cours Cours Nos. 0 Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023 mme Name: B. Tech. CERP Semest Name $:$ Mass Transfer I Time Code $:$ CHCE 2020 Max. Mar page(s) $: 2$ $:$ Attempt all questions. Assume any missing data with proper justification	$\begin{array}{r} \text { er } \quad \text { I } \\ \text { : } 03 \\ \text { arks }: ~ \end{array}$	
SECTION A (Answer all)			
S. No.		Marks	CO
Q 1	Explain interphase mass transfer with a suitable example.	5	C01
Q 2	Discuss the use of "Kremser Equation" in design of mass transfer operation unit.	5	CO1
Q 3	Explain the different types of trays used in distillation column.	5	CO1
Q. 4	Discuss the characteristics of tower packings.	5	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \times 10=40 \text { marks }) \end{gathered}$			
Q 5	In a liquid-liquid contacting device, the equilibrium distribution of solute C in the solvents A and B can be expresses as $y=10.5 x$ where x and y are the concentration of solute in phases A and B respectively. If the individual mass transfer resistances are $k_{x}=10.21 \frac{\mathrm{lbmol}}{\mathrm{hft}}{ }^{2} ; k_{y}=4.35 \frac{\mathrm{lbmol}}{\mathrm{hft}}$ Determine the phase which controls the mass transfer.	10	CO2
Q. 6	A square plate $(0.5 \mathrm{mX} 0.5 \mathrm{~m})$ coated with a layer of benzoic acid, is placed in a stream of water flowing at a velocity of $0.25 \mathrm{~m} / \mathrm{s}$ at a temperature of $25^{\circ} \mathrm{C}$. Calculate the average rate of dissolution of the acid per unit area of the plate and also the equivalent thickness of a stagnant liquid film that would offer the same resistance to mass transfer. $S h_{a v g}=0.664\left(R e_{l}\right)^{1 / 2}(S c)^{1 / 3}$ The following data (at $25^{\circ} \mathrm{C}$) are available: Solubility of benzoic acid is water $=3.01 \mathrm{~kg} / \mathrm{m}^{3}$ Diffusivity of benzoic acid in water $=10^{-9} \mathrm{~m}^{2} / \mathrm{s}$ Viscosity of water $=8.9 \times 10^{-4} \mathrm{~kg} / \mathrm{m}-\mathrm{s}$	10	CO2

Q. 7	One hundred kilogram of an aqueous solution of p-chloroform at a concentration of 1 g per kg water is to be treated with 2 kg of an adsorbent to recover the compound from the solution by a two-stage cross current contact. Calculate the recovery of the solute if the equilibrium relation at the operating temperature of 298 K is given by $\mathrm{Y}=0.6 \mathrm{X}$ where $\mathrm{X}=\mathrm{kg}$ solute per 1000 kg water and $\mathrm{Y}=\mathrm{kg}$ solute per kg adsorbent.	10	CO3
Q. 8	It is required to remove 99% of the solute C from a solution of C in G by using a pure solvent L in a counter-current cascade. The feed containing $12 \% \mathrm{C}$ in the mixture enters the column at the bottom at the rate $6000 \mathrm{~kg} / \mathrm{h}$. The solvent enters at the top at a rate of $7685 \mathrm{~kg} / \mathrm{h}$. Write down the equation of the operating line. Determine the number of trays required to perform the separation using Kremser equation if the overall tray efficiency is 40%. The equilibrium line is linear, $\mathrm{Y}=1.32 \mathrm{X}$, where $\mathrm{Y}=\mathrm{kg} \mathrm{C}$ per kg C-free G , and $\mathrm{X}=\mathrm{kg} \mathrm{C}$ per kg C-free L .	10	CO 3
$\begin{gathered} \text { SECTION C } \\ (2 \times 20=40 \text { marks }) \end{gathered}$			
Q. 9	Ethanol forms a nearly ideal solution with iso-butanol and has a relative volatility 2.2. A heated feed containing 40 mole $\%$ ethanol and 60 mole $\%$ iso-butanol enters a flash drum at a rate of $50 \mathrm{kmol} / \mathrm{h}$. (a) What fraction of the feed should be vaporized in order to have a bottom product containing not more than 10% ethanol (b) Consider a second flash drum that receives the bottom product from the first drum. If 60% of the feed is vaporized in each drum, estimate the vapor and liquid flow rates from each chamber as well as their composition.	20	$\mathrm{CO4}$
Q. 10	A distillation column separates a saturated feed containing 25 mole $\% \mathrm{~A}$ and 75 mole $\% \mathrm{~B}$. The relative volatility $\left(\alpha_{A B}\right)$ is 2.51 . The vapor liquid equilibria is shown in Figure 1. The liquid concentration on the $5^{\text {th }}$ tray is $x_{5}=0.54$. The distillate has 98 mole $\%$ A and the reflux ratio is 3 . (a) Determine the concnetration of A in vapor phase entering and leaving the $5^{\text {th }}$ tray. (b) Which section of the column does the $5^{\text {th }}$ tray belong (c) Calculate the enrichment of the vapor across the $4^{\text {th }}$ tray (d) If 97% of A present in the feed goes to top product, calculate the moles of liquid vaporized in the reboiler per mole of distillate. Assume that trays are ideal	20	CO 4

