Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Programme Name: B.Tech (CERP) Semester: IV

Course Name : Numerical Methods in Chemical Engineering Duration : 3 h

Course Code : CHCE2019 Max. Marks: 100

Nos. of page(s): 02

Instructions: In case of data missing make necessary assumptions

S.No	Section A (Attempt all questions)	Marks	CO
Q 1	Given the equations $0.5x_1 - x_2 = -9.5$ and $1.02x_1 - 2x_2 = -18.8$ (a) Solve graphically (b) Compute the determinant (c) Solve by the elimination of unknowns.	12 M	CO1
Q 2	Employ (a) Fixed-point iteration and (b) the Newton-Raphson method to determine a root of $f(x) = -0.9x^2 + 1.7x + 2.5$ using $x_0=5$. Perform the computation until \mathcal{E}_a is less than \mathcal{E}_s =0.01%. Also perform an error check of your final answer.	12 M	CO2
Q 3	Evaluate $\int_0^2 e^{-x^2} dx$ by trapezoidal rule with n =8.	12 M	CO3
Q 4	Use Lagrange's interpolation formula to find the value of y when $x = 12$, if the values of x and y are given below: x 11 13 14 18 20 23 y 25 47 68 82 102 124	12 M	CO3
Q 5	Use Liebmann's method to obtain the temperature distribution of the square heated plate (Fig. 1). Use a relaxation factor of 1.2 . The dimensions of the plate is 6 cm × 6 cm. Use atleast two interior nodes in both horizontal and vertical directions. Note that the material is aluminum with specific heat, $C = 0.2174 \text{ cal/(g} \cdot ^{\circ}\text{C})$ and density, $\rho = 2.7 \text{ g/cm}^{3}$. The thermal conductivity, $k' = 0.49 \text{ cal/(s} \cdot \text{cm} \cdot ^{\circ}\text{C})$, $\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}} = 0$	12 M	CO4

	Insulated boundary 90 97 Fig 1: Schematics of the flat plate with boundary conditions.		
	Section B (Attempt all questions)		
Q 6	Solve the following set of differential equations using Euler's method, assuming that at x=0, y_1 =4, and y_2 =6. Integrate to x=1 with a step size of 0.25. $\frac{dy_1}{dx} = -0.5y_1 \text{ and } \frac{dy_2}{dx} = 4 - 0.3 y_2 - 0.1 y_1$	20 M	CO4
Q 7	Using LU decomposition method Find A^{-1} if $A = \begin{bmatrix} 2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7 \end{bmatrix}$	20 M	CO2