Name: Enrolment No:							$\cdots \bigcup_{\text {UNIVESSITY Of ToM ORROW }}$		
Programme Name: B.Tech (CERP) Semester : IV Course Name $:$ Numerical Methods in Chemical Engineering Duration : 3 h Course Code $:$ CHCE2019 Nos. of page(s) $:$ $\mathbf{0 2}$									
Instructions: In case of data missing make necessary assumptions									
S.No	Section \mathbf{A} (Attempt all questions)							Marks	CO
Q 1	Given the equations $0.5 x_{1}-x_{2}=-9.5$ and $1.02 x_{1}-2 x_{2}=-18.8$ (a) Solve graphically (b) Compute the determinant (c) Solve by the elimination of unknowns.							12 M	CO1
Q 2	Employ (a) Fixed-point iteration and (b) the Newton-Raphson method to determine a root of $f(x)=-0.9 x^{2}+1.7 x+2.5$ using $\mathrm{x}_{0}=5$. Perform the computation until \mathcal{E}_{a} is less than \mathcal{E}_{s} $=0.01 \%$. Also perform an error check of your final answer.							12 M	CO 2
Q 3	Evaluate $\int_{0}^{2} e^{-x^{2}} d x$ by trapezoidal rule with $\mathrm{n}=8$.							12 M	CO3
Q 4	Use Lagrange's inter and y are given below:	Use Lagrange's interpolation formula to find the value of y when $x=12$, if the values of x and y are given below:				$\begin{aligned} & \hline \text { fy wl } \\ & \hline 20 \\ & \hline 102 \end{aligned}$	$x=12$, if the values of x 23 124	12 M	CO3
Q 5	Use Liebmann's method to obtain the temperature distribution of the square heated plate (Fig. 1). Use a relaxation factor of $\mathbf{1 . 2}$. The dimensions of the plate is $6 \mathrm{~cm} \times 6 \mathrm{~cm}$. Use atleast two interior nodes in both horizontal and vertical directions. Note that the material is aluminum with specific heat, $C=0.2174 \mathrm{cal} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$ and density, $\rho=2.7 \mathrm{~g} / \mathrm{cm}^{3}$. The thermal conductivity, $k^{\prime}=0.49 \mathrm{cal} /\left(\mathrm{s} \cdot \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}\right)$,$\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0$							12 M	CO4

		Insulated boundary	
		$0^{\circ} \mathrm{C}$	

