Name: Enrolment No:			
Course: Digital Systems and Applications Program: B.Sc. Physics (H), Int. B.Sc Msc Physics Course Code: PHYS 2029	UPES End Semester Examination, May 2023 Digital Systems and Applications : B.Sc. Physics (H), Int. B.Sc Msc Physics Code: PHYS 2029 tions: Use is scientific calculator is allowed.	Semester: IV Time : 03 hrs . Max. Marks: 100	hrs.
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Transform each of the following canonical expression into its other canonical form in decimal notation. (i) $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,3,5)$ (ii) $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Lambda \mathrm{M}(0,2,5,6,7,8,9,11,12)$	4	CO 2
Q2	Using suitable example, explain how a XOR gate can be used as a parity checker.	4	CO 4
Q3	Draw the circuit diagram of a decade counter.	4	CO2
Q4	Differentiate between ROM and RAM.	4	CO1
Q5	What negative value does the binary number 10011011 represent?	4	CO2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q6	Using a K-map, simplify the following function and realize it using NOR gate: $f(A, B, C, D)=\sum(0,1,2,4,5,6,8,9,12,13,14)$	10	$\mathrm{CO3}$
Q7	A 555 timer is used as an astable multivibrator. If $\mathrm{R}_{\mathrm{A}}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega$ and $\mathrm{C}=680 \mathrm{pF}$, determine its frequency and duty factor.	10	$\mathrm{CO3}$
Q8	Draw the schematic of a 4 bit left shift register with parallel loading using D Flip-Flops. Also demonstrate its working.	10	$\mathrm{CO4}$
Q9	Draw the block diagram of a CRO and explain the function of each block? OR Differentiate the different types of Integrated Circuits based upon the scale of integration.	10	CO1
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			

Q10	a) Draw a labelled pin out diagram of a 8085 microprocessor and explain the function of each pin. b) Describe the various flags used in 8085 microprocessor and show their bit positions OR Explain in detail the instruction set of the 8085 microprocessor.	20	CO2
Q11	a) Draw a master-slave J-K Flip Flop system. Explain the various operation stages. How is the race around condition eliminated by using this Flip Flop? (10) b) Explain the working of 555 timer as monostable multivibrator with the help of circuit diagram.	20	CO1

