Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Automotive Electrical and Electronics

Program: B Tech (Automotive Design Engineering)

Course Code: ECEG 2039

Semester: 4th
Time : 03 hrs.
Max. Marks: 100

Instructions: Assume suitable data as per the subject.

SECTION A (50x4M=20Marks)

(5Qx4M=20Marks)				
S. No.		Marks	CO	
Q1	What kind of batteries do electric vehicles use? Can EV batteries be replaced?	4	CO2	
Q 2	Draw the block diagram of a microcontroller system. Explain the functions of each sub-block in brief.	4	CO3	
Q3	State four advantages of a pre-engaged starter when compared with an inertia type.	4	CO3	
Q 4	The ignition component that steps up voltage is the: 1. capacitor 2. condenser 3. coil 4. king lead Cruising conditions require the ignition timing to be: 1. retarded 2. reversed 3. allocated 4. advanced	4	CO4	
Q 5	State four methods of converting electrical energy into light energy.	4	CO1	
	SECTION B (4Qx10M= 40 Marks)		,	
Q 6	Describe the operation of a synchronous motor with the help of suitable figure.	10	CO3	
Q 7	What is radio interference? How it is produced and what are different methods to reduce it.	10	CO1	
Q 8	Draw a simplified circuit of a lighting system showing the side- and headlight bulbs, light switch, dip switch and main beam warning light.	10	CO2	
Q 9	State what is meant by active and passive safety.	10	CO5	
	SECTION-C (2Qx20M=40 Marks)			

Q 10	Develop a full wave rectifier connected to an EV (RLE) load and draw the various waveforms.		
	Or	20	CO4
	Design a 4-bit counter by using D Flip-Flops and discuss the applications of these counters.		
Q 11	The three-phase alternating voltage is given by V=415×sin (314t-α). Calculate a) frequency b) line voltage c) phase voltage d) phase current for a load of 300W and at α=00 And draw the balance supply system for three phases mentioning the values of α for each phase.	20	CO5