Name:

Enrolment No:

UPES End Semester Examination, May 2023 ch to organic reaction and mechanism

Course: Stereochemical approach to organic reaction and mechanismSemester: IIProgram: MSc ChemistryTime: 03 hrs.Course Code: CHEM7024PMax. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) Do not write anything on the question paper except roll number.
- 3) Attempt all the parts of a question at one place only.
- 4) Internal choice is given only in Q 9 and 10.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	During hydrolysis of an ester, which of the two C-O bonds undergoes breaking? Provide scientific support to your answer.	4	CO1
Q 2	An optically active organic compound is subjected to break in the presence of different solvents. Specify the stereochemistry of the product when reaction is carried out in: i. ethyl alcohol ii. trifluoro acetic acid What is the difference in the mechanism of the reaction operating in two cases?	4	CO2
Q 3	Write a short note on radical ions. Specify an organic reaction where radical anion is involved as intermediate.	4	CO2
Q 4	What happens when:a. diazomethane is exposed to sunlight?b. cyclohexene is treated with dibromomethylene carbene?	2+2	CO2
Q 5	Differentiate singlet and triplet nitrene with example.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
	Question nos. 6, 7 and 8 are compulsory; internal choice is giver	1 in Q 9.	

Distinguish between axis of symmetry and alternating axis of symmetry. Identify all the possible axes of symmetry in the following compounds: a. Benzene b. Trans-dichloroethylene c. Cyclopropane d. Ethylene	10	CO3
 a. To which conditions are syn/anti, E/Z and cis/trans isomerism applied? Discuss with examples. b. Specify E/Z nomenclature to the following compounds along all the possible positions: CH₃ C₂H₅ C₂H₅ CH₃ C₂H₅ C₁C₂H₅ i. C₂H₅ C₁C₁C₁C₁C₁C₁C₁C₁C₁C₁	5+5	CO3
How do you distinguish between stereocenter and chiral center? Explain with the help of appropriate example.	10	CO4
Justify your answer with the help of energy profile diagram. OR Explain ring flipping in decalins. How does it account for the conformational stability in the molecule?	10	CO3
(2Qx20M=40 Marks)		
 a. Write short notes on: i. planar chirality ii. allenes. b. What do you understand by solvolysis? Which of the following compounds will undergo solvolysis at a faster rate and why? Which effect is operating here? H OCOAr H OCOAr I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	y. 10+10	CO3, CO2
	Identify all the possible axes of symmetry in the following compounds: a. Benzene b. Trans-dichloroethylene c. Cyclopropane d. Ethylene a. To which conditions are syn/anti, E/Z and cis/trans isomerism applied? Discuss with examples. b. Specify E/Z nomenclature to the following compounds along all the possible positions: $CH_3 \subset c^2H_6$ $CH_3 \subset c^2H_6$ $CH_3 \subset c^2H_6$ $CH_3 \subset c^2H_6$ $CH_3 \subset c^2H_6$ $CH_3 \subset c^2H_6$ H How do you distinguish between stereocenter and chiral center? Explain with the help of appropriate example. Which of the conformational isomers of cyclohexane is most stable? Justify your answer with the help of energy profile diagram. OR Explain ring flipping in decalins. How does it account for the conformational stability in the molecule? SECTION-C (2Qx20M=40 Marks) Internal choice is given in Q 10, while Q 11 is compulsor a. Write short notes on: i. planar chirality ii. allenes. b. What do you understand by solvolysis? Which of the following compounds will undergo solvolysis? Which of the following compounds will undergo solvolysis? $H \downarrow \bigcup_{I$ I I I I I I I	Identify all the possible axes of symmetry in the following compounds: a. Benzene 10 a. Benzene b. Trans-dichloroethylene 10 c. Cyclopropane d. Ethylene 10 a. To which conditions are syn/anti, E/Z and cis/trans isomerism applied? Discuss with examples. b. Specify E/Z nomenclature to the following compounds along all the possible positions: 5+5 cH ₄ - C _{H5} - C _{H6} + H + C _{H5} - C _{H6} + H + C _{H5} B + C ₄ - C ₆ - C ₆ + H + C ₄ - C ₄ + H + C ₆ - C ₆ + H + C ₆ - H + C

	 i. ii. b. Explain neighboring group participation. How does it impact the rate of reaction? Discuss the role of lone pair of electrons on heteroatom as neighboring group. Which type of intermediate is formed in such reactions? 		
Q 11	 a. An organic compound 'A' on treatment with sodamide gives a triply bonded compound 'B' (C₆H₄). 'B' displays following reactions: On treatment with ammonia, it gives 'C', which on reaction with sodium nitrite and acid under ice cold conditions gives 'E'. 'E' on treatment with H₃PO₂ produces the first member of aromatic compound 'F' (only carbon containing). On treatment with furan, it gives 'D' (C₁₀H₆O). On treatment with phenyl lithium, it gives 'G' (C₁₂H₉Li), which on further reaction with carbon dioxide followed by hydrolysis produces 'H' (C₁₃H₁₀O₂). Identify the intermediate formed in the following cases and write 	10+5+5	CO2, CO2, CO4
	the complete reactions (without mechanism):i. Carbylamine reactionii. Curtius rearrangement		
	c. Is propionic acid optically active in nature? If yes, justify; if not, how can it be converted to an optically active molecule?		