Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Nuclear and Particle Physics Program: MSc Physics Course Code: PHYS 7012 Semester : II Time : 03 hrs. Max. Marks: 100

	SECTION A		
	(5Qx4M=20Marks)		
S. No.	Attempt All Questions. Each Question will carry 4 Marks		GO
5 . NO.		Marks	CO
Q1	Describe the mirror nuclei method for nuclear radius determination.	4	CO1
Q2	Show that pair production cannot take place in empty space.	4	CO1
Q3	Determine the spin and parity of the ${}^{17}_{8}O$ and ${}^{89}_{38}Sr$ nucleus	4	CO2
Q4	The ground state of Pb-207 has spin-parity $J^{\pi} = \frac{1}{2}^{-1}$ while the first excited	4	CO3
	state has. $J^{\pi} = \frac{5}{2}^{-}$ Determine the electromagnetic radiation emitted when		
	the nucleus makes a transition from the first excited state to ground state.		
Q5	The particle physics reactions which are allowed as per Lepton number conservation are (i) $p \rightarrow n + e^+ + v_e$ (ii) $\mu^+ \rightarrow e^+ + v_e + \bar{v}_u$ (iii) $p + e^- \rightarrow n + v_e$ (iv) $K^- \rightarrow \mu^- + \bar{v}_u$ (v) $n \rightarrow p + e^- + v_e$	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		
	Each question will carry 10 marks $(10 \times 4 = 40 \text{ Marks})$		
	There is an internal choice for Q9.		
Q6	Discuss important points of the Fermi's theory of beta decay	10	CO3
Q7	Enumerate the similarities of nucleus with a liquid drop and hence obtain an empirical relation for binding energy of a nuclei, describing each of the terms.	10	CO2
Q8	Define reaction cross-section and obtain expression for reaction rate.	10	CO3
Q9	Briefly explain the tunnel theory of alpha decay.	10	CO2

	OR		
	Describe the Rutherford gold foil experiment and hence obtain expression for total scattering cross-section	10	
	SECTION-C (2Qx20M=40 Marks)		
	Attempt two questions. There is an internal choice for Q11.		
Q10	a) Explain the different types of interaction describing the strength, range and the intermediate particles of interaction for each.	10	
	b) Describe the different conservation principles in relation to elementary		
	particles giving example of each.	10	CO4
Q11	 a) Obtain the classical expression given by Bohr for stopping power of charge particles in matter. b) Describe the different interaction mechanism of gamma radiation with matter. OR 	20	CO 3
	Define Q-value of a nuclear reaction. Obtain an expression for it and hence write the condition for exoergic and endoergic nuclear reaction.		