Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

## Program: MSc Physics (All Batches) Course: Quantum Mechanics-II Course Code: PHYS 7018

Semester: II Time: 3 hrs. Max. Marks: 100

**Instructions:** Read all the instructions carefully:

- 1. Attempt all the questions of Section A, B & C.
- 2. Section B & Section C have internal choices.

## SECTION A

| S. No. |                                                                                                                                  | Marks | CO  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | Interpret the concept of identical particles. What is the difference between Bosons and Fermions?                                | 4     | CO4 |
| Q 2    | Define harmonic and sudden perturbations.                                                                                        | 4     | C01 |
| Q 3    | Outline the method of WKB approximation.                                                                                         | 4     | CO2 |
| Q 4    | State optical theorem for scattering problem.                                                                                    | 4     | CO3 |
| Q 5    | Why does the Dirac theory is more important than Klein-Gordon theory?                                                            | 4     | CO4 |
|        | SECTION B<br>(4Qx10M= 40 Marks)                                                                                                  |       |     |
| Q 6    | Describe the time independent perturbation theory for non-degenerate stationary state. Obtain first order corrected eigen value. | 10    | CO1 |
| Q 7    | Obtain the relation between scattering angles in laboratory frame and center of mass frame.                                      | 10    | CO3 |
| Q 8    | State and explain Pauli's exclusion principle for a system of two identical particles.                                           | 10    | CO4 |
| Q 9    | State Fermi-Dirac statistics and explain its significance.<br>OR                                                                 | 10    | CO4 |

|      | What are symmetric and antisymmetric wave functions? Show that the           |    |     |  |  |
|------|------------------------------------------------------------------------------|----|-----|--|--|
|      | antisymmetric wave function of two electrons would vanish if both            |    |     |  |  |
|      | occupy the same position with identical spin.                                |    |     |  |  |
|      | SECTION-C                                                                    |    | I   |  |  |
|      | (2Qx20M=40 Marks)                                                            |    |     |  |  |
| Q 10 | Apply the variation method to determine the ground state of Helium.          | 20 | CO2 |  |  |
| Q 11 | Derive an expression for the total scattering cross-section of the particles |    |     |  |  |
|      | by spherically symmetric potential.                                          |    |     |  |  |
|      | OR                                                                           | 20 | CO3 |  |  |
|      | What is phase shift? Deduce an expression for it. Explain the nature of      |    |     |  |  |
|      | phase shift in case of repulsive and attractive potentials.                  |    |     |  |  |