Name: Enrolment No:			
Course: Engineering Mechanics Semester: II Program: B. Tech ADE, ME, Mechatronics Time : 03 hrs . Course Code: MECH1002 No. of pages: 4 Instructions: All questions are compulsory. The question paper is consisting of 11 questions divided into 3 section A, B and C. Section A comprises of 5 questions of 4 marks each, Section B comprises of 4 questions of 10 marks each and Section C comprises of 2 questions of 20 marks each.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Determine the resultant of the following force system?	4	$\mathrm{CO1}$
Q 2	Determine the reactive forces at point A and B.	4	$\mathrm{CO1}$
Q 3	Determine acceleration of center of pulley ' p '. All pulleys are massless, and string is light and inextensible.	4	$\mathrm{CO1}$

Q 8	In a system, a pulley is attached to a block of mass 5 M . Also, the pulley contains a chord on both sides, attached with a block of mass M on one side and with a pulley further attached to a mass 2 M on the other side. There is no friction anywhere. Determine the initial acceleration of block of mass 5M.	10	CO 2
Q 9	A basketball player throws a ball with initial velocity $6.5 \mathrm{~m} / \mathrm{s}$ at an angle 50° to the horizontal. The ball is 2.3 m above the ground when released. Calculate i) The height of the basket (5 Marks) ii) Time taken by the ball to reach the basket. (5 Marks)	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q 10	For the truss shown in the figure: (a) Identify the zero-force member without any calculation. (2 Marks) (b) Evaluate the support reaction. (8 Marks) (c) Evaluate the force in the member DF, DG and GI by method of section. (10 Marks)	20	CO 3
Q 11	Determine area moment of inertia of composite area shown in figure about the centroidal axis. OR	20	CO 2

