Name: Enrolment No:			
Cours Progra Cours Instru 1) M 2) At 3) At	UPES End Semester Examination, May 2023 Engineering Mathematics II : B. Tech (FSE, Civil, \& Sustainability Engineering) Code: MATH 1053 ions: Read all the below mentioned instructions carefully and follow them tion Roll No. at the top of the question paper. mpt all the parts of a question at one place only. mpt all the questions from each section.	Seme Time Max. rictly:	II rs. ks: 100
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q.1.	Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=e^{3 x}$.	4	C01
Q.2.	Classify the following second order partial differential equation: $y^{2} \frac{\partial^{2} z}{\partial x^{2}}-x^{2} \frac{\partial^{2} z}{\partial y^{2}}=0, \quad x>0, y>0 .$	4	$\mathrm{CO2}$
Q.3.	Given that the equation $x^{2.2}=69$ has a root between 5 and 8 . Use the regular-falsi method to find the first approximate solution.	4	$\mathrm{CO3}$
Q. 4	Perform two iterations of bisection method to determine a root lying between 0 and 0.5 of the equation $4 e^{-x} \sin x-1=0$.	4	$\mathrm{CO3}$
Q. 5	Find a real root of the equation $x^{3}=1-x^{2}$ on the interval $[0,1]$ with an accuracy of 10^{-4}, using iteration method. Taking initial guess $x_{0}=$ 0.75 .	4	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q.6.	Find the solution of PDE: $(m z-n y) \frac{\partial z}{\partial x}+(n x-l z) \frac{\partial z}{\partial y}=(l y-m x)$, where l, m, n are constants.	10	CO2

Q. 7	Use the Newton-Raphson method to obtain a root, correct to four decimal places of the following equation (choose $x_{0}=\pi$) $x \sin x+\cos x=0$	10	CO3
Q. 8	Using the Newton's forward interpolation formula, find the cubic polynomial which takes the following values: $y(1)=24, y(3)=$ $120, y(5)=336, y(7)=720$. Hence, or otherwise, obtain the value of $y(8)$.	10	CO 3
Q. 9	Estimate the value of the integral $I=\int_{0}^{1} \frac{1}{x} d x$, using Simpson's- $1 / 3$ rule with step size $h=0.25$. OR Using Euler's method, solve the following differential equation: $\frac{d y}{d x}=x y, \quad y(0)=0$ Choose $h=0.1$ and compute $y(0.2)$.	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q. 10	(a) Solve the following second order Cauchy-Euler differential equations: $\quad x^{2} \frac{d^{3} y}{d x^{3}}+3 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2} \log x$. (b) Examine whether the equation $(x+y)^{2} d x+\left(2 x y+x^{2}-y^{2}\right) d y$ is exact or not, if yes then solve it.	$10+10$	CO1
Q. 11	Consider the first order differential equation $\frac{d y}{d x}=y-x$ with $y(0)=2$, $h=0.1$. Using the fourth order Runge-Kutta formula, find $y(0.1)$ and $y(0.2)$ correct to four decimal places. OR The table below gives the values of $\tan (x)$ for $0.10 \leq x \leq 0.30$: Using the Newton's forward difference formula, find the value of (a) $\tan (0.12)$ and (b) $\tan (0.26)$.	20	CO3

