Name:

Enrolment No:

	UNIVERSITY OF TOMO	REOW	
UPES End Semester Examination, May 2023 Course: Engineering Mathematics II Program: B. Tech (FSE, Civil, & Sustainability Engineering) Course Code: MATH 1053		Semester: II Time: 03 hrs. Max. Marks: 100	
 Men Attention 	tions: Read all the below mentioned instructions carefully and follow them ation Roll No. at the top of the question paper. The empt all the parts of a question at one place only. The provide the questions from each section.	strictly:	
	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q.1.	Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$.	4	CO1
Q.2.	Classify the following second order partial differential equation: $y^{2} \frac{\partial^{2} z}{\partial x^{2}} - x^{2} \frac{\partial^{2} z}{\partial y^{2}} = 0, x > 0, y > 0.$	4	CO2
Q.3.	Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the regular-falsi method to find the first approximate solution.	4	CO3
Q.4	Perform two iterations of bisection method to determine a root lying between 0 and 0.5 of the equation $4e^{-x}sinx - 1 = 0$.	4	CO3
Q.5	Find a real root of the equation $x^3 = 1 - x^2$ on the interval [0, 1] with an accuracy of 10^{-4} , using iteration method. Taking initial guess $x_0 =$ 0.75.	4	CO3
	SECTION B (4Qx10M= 40 Marks)		1
Q.6.	Find the solution of PDE: $(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} = (ly - mx)$, where l, m, n are constants.	10	CO2

•			
Q.7	Use the Newton-Raphson method to obtain a root, correct to four decimal		
	places of the following equation (choose $x_0 = \pi$)	10	CO3
	xsinx + cosx = 0.		
Q.8	Using the Newton's forward interpolation formula, find the cubic		
	polynomial which takes the following values: $y(1) = 24, y(3) =$		~ ~ ~
	120, $y(5) = 336$, $y(7) = 720$. Hence, or otherwise, obtain the value of	10	CO3
	<i>y</i> (8).		
Q.9	Estimate the value of the integral $I = \int_0^1 \frac{1}{x} dx$, using Simpson's-1/3 rule		
	with step size $h = 0.25$.		
	OR		
	Using Euler's method, solve the following differential equation:	10	CO3
	$\frac{dy}{dx} = xy, y(0) = 0.$		
	Choose $h = 0.1$ and compute $y(0.2)$.		
	SECTION-C (2Qx20M=40 Marks)		
Q.10	(a) Solve the following second order Cauchy-Euler differential		
	equations: $x^{2} \frac{d^{3} y}{dx^{3}} + 3x \frac{d^{2} y}{dx^{2}} + \frac{dy}{dx} = x^{2} \log x.$	10 + 10	CO1
	(b) Examine whether the equation $(x + y)^2 dx + (2xy + x^2 - y^2) dy$ is		
	exact or not, if yes then solve it.		
Q.11	Consider the first order differential equation $\frac{dy}{dx} = y - x$ with $y(0) = 2$,		
	h = 0.1. Using the fourth order Runge-Kutta formula, find $y(0.1)$ and		
	y(0.2) correct to four decimal places.		
	OR		
	The table below gives the values of tan (x) for $0.10 \le x \le 0.30$:	20	CO3
	x 0.10 0.15 0.20 0.25 0.30		
	$y(x) = \tan(x)$ 0.1003 0.1511 0.2027 0.2553 0.3093		
	Using the Newton's forward difference formula, find the value of		
	(a) $\tan(0.12)$ and (b) $\tan(0.26)$.		
	$(a) \tan(0.12) \operatorname{and}(0) \tan(0.20).$		