Name: Enrolment No:			
Course: Engineering Mechanics Program: B.Tech. Aerospace Course Code: MECH 1002		Semester: II Time: 03 hrs. Max. Marks: 100 entioned in problem.	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain perfect and redundant truss.	4	CO1
Q 2	Define Centre of Gravity and Centroid.	4	CO1
Q 3	What is the condition of self-locking in wedge and screw jack friction applications.	4	CO1
Q 4	Determine the zero-force member in the loaded truss as shown below.	4	CO1
Q 5	The aircraft landing gear consists of a hydraulic piston-cylinder D, the two pivoted links $O A B$ and $B C$. Draw the free body diagram of links $O A B$ and $B C$.	4	CO1

$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	The ratio of lift force L to drag force D for the simple airfoil is $L / D=10$. If the lift force on the short section of airfoil is 50 N , determine the resultant force \mathbf{R} and angle θ which it makes with the horizontal.	10	CO 2
Q 7	The angular displacement of a rotating rigid body is defined by the relation $\theta=3 t^{3}+t-2$, here θ is expressed in radians, determine the angular displacement, angular velocity, and angular acceleration of the rigid body when $t=3$ seconds.	10	CO 2
Q 8	The rotation of the 0.9 m arm $O A$ about O is defined by the relation $\theta=0.15 t^{2}$, where θ is expressed in radians and t in seconds. Collar B slides along the arm in such a way that its distance from O is $r=0.9-$ $0.12 t^{2}$, where r is expressed in meters and t in seconds. After the arm $O A$ has rotated through 30°, determine (a) the total velocity of the collar, (b) the total acceleration of the collar, (c) the relative acceleration of the collar with respect to the arm.	10	$\mathrm{CO2}$
Q 9	The magnitude and direction of the velocities of two identical frictionless balls before they strike each other, is shown in Fig. 9(a). Assume $\boldsymbol{e}=0.9$, determine the magnitude and direction of the velocity of each ball after the impact. Fig. 9(a) Fig. 9(b) In the device shown in Fig. 9(b). Find the velocity of point B and angular velocity of both the rods. The wheel is rotating at $2 \mathrm{rad} / \mathrm{s}$ anticlockwise.	10	CO 2

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Referring to figure below, the coefficients of friction are as follows: 0.25 at the floor, 0.3 at the wall and 0.2 between the blocks. Determine the minimum values of a horizontal force P , applied to the lower block that will hold the system in equilibrium.	20	CO3
Q 11	Calculate the force in each member of the loaded truss. All triangles are equilateral, and length of each member is L. Or, Calculate the forces in members $D E, D L$ and $D C$ of the plane truss as shown in figure below.	20	CO 3

