Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023 Course: Engineering Mathematics II			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1	Solve the following differential equation $\left(D^{2}-3 D+2\right) y=e^{5 x}$, where $D \equiv \frac{d}{d x}$	4	CO1
Q2	If $w=\ln z(z=x+i y)$, find $\frac{d w}{d z}$ and determine where w is nonanalytic.	4	CO2
Q3	Prove that $\int_{C} \frac{d z}{z-a}=2 \pi i$, where C is the circle $\|z-a\|=r$	4	CO2
Q4	Find the nature and location of singularities of the following function $\frac{z-\sin z}{z^{2}}$	4	CO3
Q5	Eliminate arbitrary constants a and b from $z=(x-a)^{2}+(y-b)^{2}$ to form the partial differential equation.	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q6	Test whether the equation $(x+y)^{2} d x-\left(y^{2}-2 x y-x^{2}\right) d y=0$ is exact and hence solve it.	10	CO1
Q7	Evaluate, using Cauchy's integral formula: $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z, \text { where } C \text { is the circle }\|z\|=3$	10	CO 2
Q8	Expand the function $f(z)=\sin z$ in a Taylor's series about $z=0$ and determine the region of convergence.	10	CO3
Q9	Solve the following partial differential equation $\left(\frac{y^{2} z}{x}\right) \frac{\partial z}{\partial x}+(x z) \frac{\partial z}{\partial y}=y^{2}$ OR	10	CO4

	By using Lagrange's method find the solution of the partial differential equation $y^{2} \frac{\partial z}{\partial x}-x y \frac{\partial z}{\partial y}=x(z-2 y)$		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10A	By integrating around a unit circle, evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta$, where $a^{2}<1$.	10	CO 3
Q10B	Find Taylor's series expansion of $f(z)=\frac{1}{(z+1)^{2}}$ about the point $z=-i$.	10	CO 3
Q11	Determine the solution of one-dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L$, under the following conditions boundary conditions: $u(0, t)=u(L, t)=0$ for all $t>0$. Initial condition: $u(x, 0)=f(x)$. OR Using method of separation of variables solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L$ subject to the boundary conditions: $u(0, t)=u(L, t)=0$ for all $t>0$ and initial conditions: $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$.	20	CO4

