Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: BASIC ELECTRICAL & ELECTRONICS ENGG Semester: II

Program: B.Tech APE, FSE, CHEMICAL Time : 03 hrs.
Course Code: ECEG1004 Max. Marks: 100

Instructions:

SECTION A (50x4M=20Marks)

(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q1.	Define (i) KVL (ii) KCL (iii) Apparent (iv) Reactive power	5	CO1	
Q2.	Explain Voltage regulation and clipping of the waveforms in linear wave shaping.	5	CO2	
Q3.	Plot the output voltage. V_i	5	CO3	
Q4.	Convert(653)10 = ()2 = ()8 = () $_{16}$ = () $_{BCD}$	5	CO4	
Q5.	An alternating current i is given by; $i = 141.4 \sin 314 t$ Find (i) the maximum value (ii) frequency (iii) time period and (iv) the instantaneous value when t is 3 ms.	5	CO4	
	SECTION B (4Qx10M= 40 Marks)			
Q6.	Explain the working of a <i>P-N</i> Junction diode with a neat sketch in both the regions of operation (forward and reverse). Also from the <i>V-I</i> characteristic curve explain the significance of knee voltage and breakdown voltage. Write the applications of a junction diode in detail.	10	CO1	

Q7.	Explain differences between CE and CB configuration with neat diagrams Find I_E , I_B and I_C in the circuit given below; given $\alpha_{DC} = 0.98$ $V_{BB} + V_{CC} - V_{CC} + V_{CC} - V_{CC} + V_{CC} - V_{CC} + V_{CC} + V_{CC} - V_{CC} + V_{C$	10	CO2
Q8.	 (a)Solve the Boolean expression using De- Morgan Theorem: (i) f=(A'B'+C+D)' (ii) [AB'+(C+D)' +AC]' (b)Design the half adder circuit. 	4+6	CO3
Q9.	A series RLC circuit has $R = 5$ W, $L = 0.2$ H and $C = 50$ μ F. The applied voltage is 200 V. Find (i) resonant frequency (ii) Q-factor (iii) bandwidth (iv) current at resonance.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q10.	(i)Explain input and output characteristics of transistor in which the base is connected in common to the emitter and collector terminals. And draw it behavior for an pnp type of transistor with neat graphs. (ii)Determine V_{CE} , V_{BE} and V_{CC} for the transistor circuits given below. Also find whether the transistors are saturated.	10+10	CO3
Q11	Attempt both the parts (a) Write the definition of Superposition theorem using example. (b) For the ladder network shown in Fig. below, find the source voltage Vs which results in a current of 7.5 mA in the 3 Ω resistor.		

