Name:

Enrolment No:

UPES End Semester Examination, May 2023 Course : THERMAL PHYSICS Semester : II : BSc PHYSICS (H) Time : 03 hrs. Program **Course Code: PHYS1029** Max. Marks: 100 **Instructions:** • All questions are compulsory (Q9 and Q11 have an internal choice). Use of scientific calculator is allowed. • **SECTION A** (5Qx4M=20Marks) S. No. Marks CO Q 1 A motor car tyre has a pressure of 3 atmospheres at a temperature of 38 ^oC. If the tyre suddenly bursts, find the resulting temperature (given y =4 **CO1** 1.4). Q 2 Calculate the maximum possible efficiency of a heat engine working 4 **CO1** between 40 °C and 300 °C. Q 3 (a) A heat engine can develop efficiency equal to 100% if the temperature of the sink is: 1. Less than that of the source. 2. Equal to that of the source. 3. 0 K. 4. 0 °C. 2+2**CO1** (b) If a system A is in thermal equilibrium separately with B and C, then B and C are also in thermal equilibrium with each other. This is the statement of: 1. Zeroth law of thermodynamics. 2. First law of thermodynamics. 3. Second law of thermodynamics. 4. Third law of thermodynamics. Q4 (a) Which statement(s) is (are) true about the 2^{nd} order phase transition: 2+2**CO2** 1. Variable T & P. 2. No transference of heat.

	3. Change in S & V.		
	 (b) Which paramagnetic substance is used in the Adiabatic Demagnetization setup: 1. Gadolinium Sulphate. 2. Platinum. 3. Aluminum. 		
Q 5	 (a) For a throttling process what can be said about the enthalpy of the system: No change. Increases. Decreases. (b) Which among the following is the expression of the Clausius inequality: ∫ δH/T ≤ 0. ∫ δH/T ≥ 0. ∫ δH/T ≠ 0. 	2+2	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Explain "Carnot's Theorem" taking example of two engines that are working between same source and same sink.	10	CO1
Q 7	 (a) What is Magneto-caloric effect. (b) Explain the construction and working of the setup to achieve low temperatures making use of the concept of Adiabatic Demagnetization. 	10 (3+7)	CO2
Q 8	Explain "Production of Cooling in Adiabatic Expansion" using Maxwell's thermodynamical relations and show that: $dT = -\frac{TP\beta}{mc_v}dV$	10	CO3
	where β is the coefficient of increase of pressure at constant volume and c_v is the specific heat per gram.		

Q 9	Explain the construction and working of the Andrews experiment to study the behavior of real gases.	10	CO4
	OR		
	On a PV diagram depict and explain the 5 isothermals from Andrews experiment at 13.1 °C, 21.5 °C, 31.1 °C, 35.5 °C and 48.1 °C. On the same plot depict the "border curve" and the "critical point".		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	(a) Explain the porous-plug experiment for the production of low temperature.	20 (10+10)	
	(b) Obtain an expression of the Joule Thomson coefficient and hence show that there is no fall in temperature with pressure for a perfect gas.		CO3
Q 11	 (a) Starting with Van der Waal's equation obtain the values of T_c, P_c & V_c and hence show that value of the critical coefficient of a gas is 8/3. 		
	(b) Calculate the Van der Waal's constants for a gas, given that $T_c = 150$ K, $P_c = 40$ Atm and $R = 82.07$ cm ³ Atm K ⁻¹ .		
	OR	20	CO4
	(a) Obtain the reduced equation of state and explain the law of corresponding states.	(10+10)	
	(b) Find the mean free path, frequency of collision and molecular diameter of a gas, given the viscosity of gas $\eta = 170 \times 10^{-7} \text{ N m}^{-2}$ per unit velocity gradient, average velocity $c = 5 \times 10^2 \text{ ms}^{-1}$, density $\rho = 1.25 \text{ kg m}^{-3}$ and number of molecules per m ³ = 2.705 x 10 ²⁵ .		