| Name: |
| :--- | :--- |
| Enrolment No: |

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Waves \& Optics
Program: B.Sc (H) Physics
Course Code: PHYS 1014

Semester : II
Time $: 03 \mathrm{hrs}$
Max. Marks: $\mathbf{1 0 0}$

Instructions:

- All questions are compulsory (Q.No. 9 and Q.No. 11 has an internal choice)
- Scientific calculators can be used for calculations

> SECTION A
> $(5 Q \times 4 M=20$ Marks $)$

- All questions are compulsory, Each Question carries 4 Marks
- Write very Short Answers/ Solve

Q. No.	Statement of question	Marks	CO
$\mathbf{1}$	Define amplitude, periodic time, frequency and phase.	$\mathbf{4}$	CO1
$\mathbf{2}$	50 tuning forks are arranged in an order of increasing frequency and any two successive forks give 5 beats per second when sounded together. If the last fork gives an octave of the first, calculate the frequency of the latter.	$\mathbf{4}$	$\mathbf{C O 2}$
$\mathbf{3}$	Two coherent sources whose intensity ratio is 81:1 produce interference fringes. Deduce the ratio of maximum to minimum intensity.	$\mathbf{4}$	$\mathbf{C O 2}$
$\mathbf{4}$	What is coherence? Explain different cases for the sources to be the coherent sources.	$\mathbf{4}$	CO1
$\mathbf{5}$	Distinguish between Interference and Diffraction.	$\mathbf{4}$	CO1

SECTION B
(4Q x 10M = 40 Marks)

- All questions are compulsory, Q.No. 9 has an internal choice, Each Question carries $\mathbf{1 0}$ Marks
- Write Short/ Brief notes/ Derive/ Solve

Q. No.	Statement of question	Marks	CO
$\mathbf{6}$	Show that the velocity of transverse waves along a stretched string is $v=\sqrt{\frac{T}{m}}$, where T is the tension applied to the string and m is linear density.	$\mathbf{1 0}$	$\mathbf{C O 3}$
$\mathbf{7}$	(a) Derive an expression for the cosine law due to the reflected system. (5) (b) Find the thickness of a soap film $\mu=1.33$ which gives constructive second order interference of reflected light of $\lambda=700 \mathrm{~m} \mu$	$\mathbf{1 0}$	$\mathbf{C O 2}$
$\mathbf{8}$	(5) Calculate the number of lines per cm in a 2.5 cm wide grating which will resolve the Sodium lines of wavelength in the second order.	$\mathbf{1 0}$	$\mathbf{C O 1}$

	(b) A zone plate has a focal length of 60 cm for wavelength of 5893 Å, find the radii of first and hundredth circles of the zone plate.		
9	(a) Write about the change of phase on reflection from the boundary between two media. Draw a neat diagram. (OR) (b) Explain the working of the Melde's experiment with a neat diagram. Determine the frequency of vibration in transverse mode.	10	CO 2
- All - W	$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 M=40 \text { Marks }) \end{gathered}$ questions are compulsory, Q.No. 11 has an internal choice, Each Question carri long answer/ Derive/ Solve	$\text { s } 20 \mathrm{Ma}$	
Q. No	Statement of question	Marks	CO
10	(a) Describe Young's double slit experiment and derive an expression for fringe width. (b) What are standing waves? Derive an expression for the equation defining the standing waves.	20	$\mathrm{CO3}$
11	(a) With a neat sketch, describe an arrangement to observe Newton's rings in a reflected systemObtain an expression for the wavelength of the light used. (b) A beam of monochromatic light of wavelength $5.82 \times 10^{-7} \mathrm{~m}$ falls normally on a glass wedge of 20 sec of an arc. If the refractive index of glass is 1.5 , find the number of dark fringes per cm of glass wedge. (OR) Describe Fraunhofer diffraction at a single slit and deduce the positions of central maximum, principal minima and secondar maxima. Draw the representative graph of the intensity distribution.	20	CO 4

