Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Electricity & Magnetism Program: BSc (H) Physics Course Code: PHYS 1013 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions:

- There are 3 Sections such as Section A, B & C.
- Section A is compulsory, however, Section B & Section C have internal choices.
- Scientific calculator is allowed.

SECTION A (5Qx4M=20Marks)

	(3QA4WI-20WIALKS)	1	
S. No.		Marks	CO
Q1	Discuss briefly the origin of magnetic moment in materials. Find the magnetic moment due to orbital motion of electrons in an atom in terms of Bohr Magneton.	4	CO1
Q2	What are active elements of a circuit? Write down the expressions for the impedance of LR, CR, LC and LCR circuits.	4	CO2
Q3	What are paramagnetic materials? Discuss the effect of temperature on paramagnetic materials	4	C01
Q4	Discuss the mechanism of polarization in non-polar dielectric materials.	4	CO1
Q5	Briefly explain Thevenin's theorem with the help of AC and DC networks.	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		
Q6	Derive the expression for electrostatic energy stored in a discrete charge distribution $Q_1, Q_2,, Q_N$.	10	CO2
Q7	 For an LC circuit, derive the expression for current in the following cases: a) No external voltage source is applied. The capacitor is charged with charge q₀ to begin with. b) An external AC voltage source, V = V₀ sin ωt, is applied. 	10	CO3

	Discuss the results in both the cases. Also, draw the phasor diagram to explain the results.		
Q8	Explain the phenomenon of hysteresis in ferromagnetic materials. Define various terms like (a) Remnant Magnetization (b) Coercivity. Differentiate between soft and hard magnets based on the hysteresis.	10	CO1
Q9	State Ampere's circuital law in integral and differential forms. Using Ampere's law, find the magnetic field intensity due to an infinite sheet of current carrying a current density given as $\vec{K} = K_y \hat{f}$ Amp/m. The sheet is placed in $z = 0$ plane.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		1
Q10	 a) Explain briefly the Faraday's law of electromagnetic induction and write down the expressions for transformer and motional emfs. (5 Marks) b) Derive the expression for mutual inductance of a coaxial solenoid in which the outer solenoid has radius r₂, number of turns N₂ and current flowing is I₂ and the inner solenoid has radius r₁, number of turns N₁ and current flowing is I₁. The length of both the solenoids is L. (15 Marks) OR a) Discuss the reasons behind Maxwell's correction in Ampere's law. Derive a mathematical expression for the correction. (5 Marks). (b) Consider some charge with a charge density ρ is distributed in a material with electrical permittivity ε and conductivity σ. Using charge conservation concept, find out ρ after a time t. Discuss the decay of ρ in the case of a conductor and insulator. (15 Marks) 	20	CO4
Q11	Write the EMF equation for LCR circuit series circuit powered by a voltage source $v(t) = V_0 \sin \omega t$. Derive the expression for current flowing in the circuit under the action of the externally applied voltage. Discuss the conditions of resonance. Why it is called an acceptor circuit?	20	CO3