Name:

S. No.

Enrolment No:

Marks

 \mathbf{CO}

UPES

End Semester Examination, May 2023

Course: Chemical energetics, equilibria, and functional group organic chemistry

Program: B.Sc (H)-Geology / Physics/ Mathematics (Generic elective)

Time : 03 hrs. Course Code: CHEM1008G Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

Q 1	Complete the following reaction $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4	CO1
Q 2	Explain integral and differential enthalpy of solution.	4	CO1
Q 3	Compare SN1 and SN2 reactions with suitable examples	4	CO3
Q 4	Derive relationship between Kp and Kc.	4	CO1
Q 5	$2A(g) + B(g) \leftrightarrow D(g) + E(g) + 100$ Kcal . Discuss the effect of temperature and Concentration at equilibrium of given reaction.	4	CO1
	SECTION B		
	(4Qx10M = 40 Marks)		
Q 6	 a) Calculate pH of the following solutions. i) 0.002 M HNO₃ ii) 0.004 N KOH b) What are buffer solution? Write the equation used to calculate 	5+5	CO1
	pH of a buffer solution.		
Q 7	 (i) Derive an expression for relation between total pressure P and degree of dissociation α for reaction 2NH₃(g)↔3H₂(g) + N₂(g). (ii) Complete the reaction with mechanism: Conc.HNO ₃ [A]	5+5	CO1 CO3

Q 8	(i) Complete the following reaction sequence:		
	Write full form of PCC. (ii) What is common ion effect (iii) What is third law of thermodynamics	6+2+2	CO3 CO2 CO1
Q 9	Explain the following with suitable reactions a) Reimer Tiemann reaction b) Houben Hoesch condensation	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(i) The molar heat of formation of NH ₄ NO ₃ (s) is -367.54 kj and those of N ₂ O(g) and H ₂ O(l) are +81.46 kJ and -285.78 kJ respectively at 25°C and at 1 atm pressure. Calculate ΔH for the reaction NH ₄ NO ₃ (s) → N ₂ O(g) + 2H ₂ O(l). (ii) Complete and explain the following reaction H ₃ C CH ₃ H CH ₃ P (iii) Which will be more reactive for SN1 reaction Give suitable reasoning. H ₂ C CI Or CI a) CI Or CI CI	8+8+6	CO1 CO2 CO3
Q 11	 (i) Discuss benzyne mechanism with relevant example. (ii) How will you differentiate between primary, secondary and tertiary alcohol. Write name of test, principle and reactions. (iii) Complete the following reaction 	8+8+6	CO3 CO2 CO3

