Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Linear Algebra Program: B. Sc. (H) Mathematics Course Code: MATH 1047

Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

	SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО		
Q 1	Define the basis and dimension of a vector space.	4	CO1		
Q 2	Explain linear transformation and Isomorphism.	4	CO2		
Q 3	Describe Liner functional on vector space and dual space.	4	CO3		
Q 4	Let λ be an eigenvalue of an invertible operator <i>T</i> then show that λ^{-1} is an eigenvalue of T^{-1} .	4	CO3		
Q 5	In an inner product space $V(F)$, prove that $\ \alpha + \beta\ ^2 = \ \alpha\ ^2 + \ \beta\ ^2 + 2Re\langle \alpha, \beta \rangle \forall \alpha, \beta \in V$ where <i>Re</i> stands for the real part.	4	CO4		
	SECTION B (4Qx10M= 40 Marks)				
Q 6	Prove that the linear span $L(S)$ of a non-empty subset S of a vector space $V(F)$ is the smallest subspace of the vector space $V(F)$ containing S .	10	CO1		
Q 7	Find the linear map $T: \mathcal{R}^2 \to \mathcal{R}^3$ whose matrix is $A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \\ 0 & 1 \end{bmatrix}$ with basis $B = \{(1,1), (0,2)\}$ and basis $B' = \{(0,1,1), (1,0,1), (1,1,0)\}.$	10	CO2		
Q 8	Let $\gamma = \beta - \frac{\langle \beta, \alpha \rangle}{\ \alpha\ ^2} \alpha$ then prove the Cauchy-Schwarz inequality $ \langle \alpha, \beta \rangle \le \ \alpha\ \ \beta\ \forall \alpha, \beta \in V.$	10	CO4		

Q 9	If <i>T</i> is a linear transformation on $V_3(\mathcal{R})$ which is represented in the standard basis by the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. Determine the eigenvalues and eigenvectors. OR Let W_1 and W_2 be subspaces of a finite-dimensional vector space <i>V</i> over a field <i>F</i> then prove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.	10	CO3	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Find the dual basis of the basis set $B = \{(1, -1, 3), (0, 1, -1), (0, 3, -2)\}$ for $V_3(\mathcal{R})$.	20	CO3	
Q11	(A) Show that $\langle x, y \rangle$ is an inner product space where $\langle x, y \rangle = 2x_1\overline{y_1} + x_1\overline{y_2} + x_2\overline{y_1} + x_2\overline{y_2}, \forall x = (x_1, x_2),$ $y = (y_1, y_2) \in \mathcal{R}^2(\mathcal{R})$ (B) Prove that every finite-dimensional vector space is an inner product space. OR In an inner product space $V(F)$ prove the polarization identity $\langle \alpha, \beta \rangle = \frac{1}{4} (\alpha + \beta ^2 - \alpha - \beta ^2 + i \alpha + \beta ^2 - i \alpha - \beta ^2)$ $\forall \alpha, \beta \in V.$	20	CO4	