Name: Enrolment No:									
Course: Linear Algebra Semester: II Program: B. Sc. (H) Mathematics Time: 03 hrs. Course Code: MATH 1047 Max. Marks: $\mathbf{1 0 0}$ Instructions: Attempt all questions									
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$									
S. No.		Marks	CO						
Q 1	Define the basis and dimension of a vector space.	4	CO1						
Q 2	Explain linear transformation and Isomorphism.	4	CO2						
Q 3	Describe Liner functional on vector space and dual space.	4	CO3						
Q 4	Let λ be an eigenvalue of an invertible operator T then show that λ^{-1} is an eigenvalue of T^{-1}.	4	CO3						
Q 5	In an inner product space $V(F)$, prove that $\\|\alpha+\beta\\|^{2}=\\|\alpha\\|^{2}+\\|\beta\\|^{2}+2 \operatorname{Re}\langle\alpha, \beta\rangle \forall \alpha, \beta \epsilon V$ where $R e$ stands for the real part.	4	CO4						
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M= } 40 \text { Marks) } \end{gathered}$									
Q 6	Prove that the linear span $L(S)$ of a non-empty subset S of a vector space $V(F)$ is the smallest subspace of the vector space $V(F)$ containing S.	10	CO1						
Q 7	Find the linear map $T: \mathcal{R}^{2} \rightarrow \mathcal{R}^{3}$ whose matrix is $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 3 \\ 0 & 1\end{array}\right]$ with basis $B=\{(1,1),(0,2)\}$ and basis $B^{\prime}=\{(0,1,1),(1,0,1),(1,1,0)\}$.	10	CO2						
Q 8	Let $\gamma=\beta-\frac{\langle\beta, \alpha\rangle}{\\|\alpha\\|^{2}} \alpha$ then prove the Cauchy-Schwarz inequality $\|\langle\alpha, \beta\rangle\| \leq\\|\alpha\\|\\|\beta\\| \forall \alpha, \beta \in V$.	10	CO4						

Q 9	If T is a linear transformation on $V_{3}(\mathcal{R})$ which is represented in the standard basis by the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$. Determine the eigenvalues and eigenvectors. OR Let W_{1} and W_{2} be subspaces of a finite-dimensional vector space V over a field F then prove that $\left(W_{1}+W_{2}\right)^{0}=W_{1}{ }^{0} \cap W_{2}{ }^{0}$.	10	$\mathrm{CO3}$								
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$											
Q 10	Find the dual basis of the basis set $B=\{(1,-1,3),(0,1,-1),(0,3,-2)\}$ for $V_{3}(\mathcal{R})$.	20	$\mathrm{CO3}$								
Q11	(A) Show that $\langle x, y\rangle$ is an inner product space where $\begin{gathered} \langle x, y\rangle=2 x_{1} \overline{y_{1}}+x_{1} \overline{y_{2}}+x_{2} \overline{y_{1}}+x_{2} \overline{y_{2}}, \forall x=\left(x_{1}, x_{2}\right) \\ y=\left(y_{1}, y_{2}\right) \in \mathcal{R}^{2}(\mathcal{R}) \end{gathered}$ (B) Prove that every finite-dimensional vector space is an inner product space. OR In an inner product space $V(F)$ prove the polarization identity $\begin{gathered} \langle\alpha, \beta\rangle=\frac{1}{4}\left(\\|\alpha+\beta\\|^{2}-\\|\alpha-\beta\\|^{2}+i\\|\alpha+\beta\\|^{2}-i\\|\alpha-\beta\\|^{2}\right) \\ \forall \alpha, \beta \in V . \end{gathered}$	20	CO4								

