Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Program Name: B. Sc. (H) Mathematics

Course Name : Integral Calculus Semester : II
Course Code : MATH-1046 Time : 03 Hrs.
Nos. of page(s) : 02 Max Marks : 100

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 8 and 11 have internal choice.

SECTION A

S. No.		Marks	CO
Q 1	Evaluate the integral $\int_0^{\pi/4} \sin^4 2x dx$.	4	CO1
Q 2	Show that $(I_{n-1} + I_{n+1}) = 1$, where $I_n = \int_0^{\pi/4} \tan^n \theta d\theta$.	4	CO2
Q 3	Find the value of $\Gamma\left(-\frac{5}{2}\right)$.	4	CO3
Q 4	If $u = x \sin y$ and $v = y \sin x$, then find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$.	4	CO4
Q 5	If $u = x \sin y$ and $v = y \sin x$, then find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$. Find the volume generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $(a, b > 0)$ about the <i>x</i> -axis.	4	CO5
	SECTION B		
Q 6	Evaluate: $\lim_{n \to \infty} \left[\frac{1}{n^2} \sec^2 \frac{1}{n^2} + \frac{2}{n^2} \sec^2 \frac{4}{n^2} + \frac{3}{n^2} \sec^2 \frac{9}{n^2} + \dots + \frac{1}{n} \sec^2 1 \right]$	10	CO1
Q 7	Derive a reduction formula for $\int e^{ax} \sin^n x dx$ and hence evaluate $\int e^x \sin^3 x dx$.	10	CO2
Q 8	Change the order of integration and hence evaluate $\int_0^1 \int_x^1 (x^2 + y^2) dy dx$. OR Evaluate $\int \int \frac{2xy^5}{\sqrt{1+x^2y^2-y^4}} dx dy$ over the triangle having vertices $(0,0)$, $(1,1)$ and $(0,1)$.	10	CO4
Q 9	Find the length of the arc of the curve $y = \log_e \left(\frac{e^x - 1}{e^x + 1}\right)$ from $x = 1$ to $x = 2$.	10	CO5

SECTION-C						
Q 10	(i) Prove that: $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$ (ii) Express $\int_0^1 x^m (1-x^p)^n dx$ in terms of Beta function and hence evaluate the integral $\int_0^1 x^{3/2} (1-\sqrt{x})^{1/2} dx$.	10+10	CO3			
Q 11	Find the area of the curvilinear triangle bounded by the parabolas $y^2 = 12x$, $x^2 = 12y$, circle $x^2 + y^2 = 45$ and lying outside the circle. OR Using the transformation $x - y = u$, $x + y = v$, evaluate $\iint \cos\left(\frac{x - y}{x + y}\right) dx dy$ over the region bounded by the lines $x = 0$, $y = 0$ and $x + y = 1$.	20	CO5			