Name Enrol	: ment No:									
		UPES								
Progr Cours	End Semester Examination, May- 2023Course Name: Igneous PetrologySemester: IIProgramme Name: B. Sc, Geology (Hons)Time: 03 hrsCourse Code: PEGS 1010Max. Marks: 100Instruction: Attach the CIPW Sheet with Answer script									
		SECTION A								
Q 1	 a. Sills linked by relatively short dike-like seg b. Volcanic glass is otherwise known as c. Anhedral grains give rise totex d. Transformation of glass to crystalline matter 	xture.	04	CO1						
Q 2	Mark True/ False a. CIPW classification means volcanic/ g b. Fluidity of magma is determined by m c. Picritic magma contains the least amou d. Presence of incompatible minerals gov	agma polymerization. unt of mafic minerals.	04	CO1						
Q 3	Discuss the special case of Ophitic Textur	re.	04	CO2						
Q 4	"Bysmalith is modified Laccolith" Analyz	ze the same	04	CO3						
Q 5	Using CIPW norm, Classify Igneous rock	s based on order.	04	CO2						
	(40	SCETION B Qx10M = 40 Marks)								
Q 6	Explain Modal and Normative minera classification.	als and discuss their significance in CIPW	10	CO3						
Q 7	Examine & validate the statement "Uni-co degree of freedoms".	omponent system should have a maximum of two	10	CO4						
Q 8	Differentiate between Peritectic and Euter	ctic point	10	CO3						
Q 9	With Neat sketch, label the various zones Or Assimilation can be well observed in Xen		10	CO2						

	$\frac{\text{SECTION C}}{(2Qx20M = 40 \text{ Marks})}$		
Q 10	Condition of Congruency is applicable to closed systems only. Examine the same using the principle of Lever rule.		
	OR	20	CO3
	With neat schematic, demarcate the potential sites of Magma generation with due justification.		
Q 11	Using CIPW Norm, find out the Salic and Femic minerals, their abundance and the rock class.		
	The spread-sheet is attached below.		
		20	CO4

Calcite	Apatite		Ilmanite	Haematite	Magnetite	Olivine		Hypersthene		Wollastonite	Diopside			Acmite		Corundum	Nepheline	Leucite	Anorthite	Albite	Orthoclase	Quartz	Molecula	Molecu	Percenta	Ninema'						
Ca0.CO.	3Cao, P2O1, 1/3CaF2	FeS:	FeO, TiO2	Fe;0,	FeO, Fe ₁ O ₁	2FeO, SiO2	2MgO, SiO2	EeO. SiO2	MaO, SiO2	CaO, SiOr	FeO, SiO2	Ma0, SiO2	CaO, SiO2	Na:0, Fe:03, 4SiO;		A1,0,	Na2O, Al.O., 2 SiO2	K20, Al ₂ 0, 4 Si02	CaO, Al,O, 2 SiO2	Na.O., Al.O., 6 SiO2	K.O, ALO, 6SiO2	SIO,	Molecular Proportion	Molecular Weights	Percentages(analysis)	CONSTRACTION OF LOCK						
								_																60	49.68	NIV!						
																								102	36.13	Lociety .						
																								160	2.49	14/41						
															1									72	8.88	1400						
	1														T			-						40	1.13	ていまましろう						
		-											-		1		-							95	0.79	(ACALL)						
									-						T									62	0.25	-						
		- 24				-									1		4		-2		-			94	0.32	ŀ						
				-											1		-				-			18		1						
				_				_							t		-							4		1						
															1		·				6			80								
		_													t									32	i. K	The second se						
															T						3			355	2	1						
				_											1		_				_			19	_	ŀ						
																								11		104400						
																							Molecular Proportions									
100	336	120	152	160	232	204	204	204	204	204	204	204	140	132	100	116	132	100	116	452		102	284	436	278	524	556	8	Weights	Molecular		
												-											Percentage									
A M			0 10										0	-		-11		0														
Grown	Femic									1		Group	Salic					-	Group of standard mineral													