Name:

**Enrolment No:** 



## UPES End Semester Examination, May 2023

Course: Calculus Program: B. Sc. (Physics, Chemistry, Geology) Course Code: MATH 1033G Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Read all the below-mentioned instructions carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY.

| SECTION A<br>All questions are compulsory |                                                                                                                                                 | (5Qx4M=20Marks) |                    |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| S. No.                                    |                                                                                                                                                 | Marks           | CO                 |
| Q1                                        | Calculate $\lim_{x\to 2} \left(4 - \frac{3}{2}x\right)$ using $\epsilon$ and $\delta$ definition of limit.                                      | 04              | CO1                |
| Q2                                        | Apply Leibniz's theorem to prove<br>$x^{2}y_{n+2} + (2n+1)xy_{n+1} + (n^{2}+1)y_{n} = 0$ when $y = a \cos(\log x) + b \sin(\log x)$ .           | 04              | CO2                |
| Q3                                        | Evaluate the equation of tangent and normal to the curve<br>$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ at } (a \sec \theta, b \tan \theta).$ | 04              | CO3                |
| Q4                                        | Analyze the symmetry, origin and point of intersection for the curve $y^2(2a - x) = x^3$ .                                                      | 04              | CO4                |
| Q5                                        | Apply mean value theorem to show that<br>$\sin x > x - \frac{1}{6} x^3$ , if $0 < x < \frac{\pi}{2}$ .                                          | 04              | CO6                |
|                                           | SECTION B<br>All questions are compulsory, and Question 9 has an internal                                                                       |                 | <b>10 Montra</b> ) |
| Q6                                        | Classify the asymptotes of the curve:<br>$y^{3} - x^{2}y - 2xy^{2} + 2x^{3} - 7xy + 3y^{2} + 2x^{2} + 2x + 2y + 1 = 0.$                         | (4Qx10M=        | CO3                |

| Q7                                                                                                     | Trace the curve $x = a \cos^3 t$ , $y = b \sin^3 t$ .                                                                                         | 10 | CO4 |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| Q8                                                                                                     | Calculate the extrema of the function                                                                                                         |    |     |  |
|                                                                                                        | $f(x, y) = 4x^{2} + 4y^{2} + x^{3}y + yx^{3} - xy - 4$                                                                                        | 10 | CO5 |  |
|                                                                                                        | and the saddle points.                                                                                                                        |    |     |  |
| Q9                                                                                                     | Apply Euler's theorem to prove<br>$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$                   |    |     |  |
|                                                                                                        | when $u = \cos^{-1} \frac{x+y}{\sqrt{x} + \sqrt{y}}$ . OR                                                                                     | 10 | CO6 |  |
|                                                                                                        | Evaluate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ when $u = \frac{x^2 y^2}{x+y}$ , and hence deduce that           |    |     |  |
|                                                                                                        | $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy \frac{\partial^{2}u}{\partial x\partial y} + y^{2}\frac{\partial^{2}u}{\partial y^{2}} = 6u$ |    |     |  |
|                                                                                                        | SECTION-C                                                                                                                                     |    |     |  |
| All questions are compulsory, and questions 11(a) and 11(b) have internal choices<br>(2Qx20M=40 Marks) |                                                                                                                                               |    |     |  |
| Q10(a)                                                                                                 | Estimate the length of tangent, subtangent, normal and subnormal to $\overline{\tau}$                                                         |    |     |  |
|                                                                                                        | the curve $x = a (\theta - \sin \theta)$ , $y = a(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$ .                                             | 10 | CO3 |  |
| Q10(b)                                                                                                 | Discuss the function $f(x) = x^4 - 4x^3$ with respect to increasing and                                                                       |    |     |  |
|                                                                                                        | decreasing nature, concavity, point of inflection.                                                                                            | 10 | CO4 |  |
| Q11(a)                                                                                                 | Write Taylor's formula for the function $f(x) = \log(1 + x), -1 < x < 1$                                                                      |    |     |  |
|                                                                                                        | $\infty$ about $x = 2$ with Lagrange's form of remainder after 3 terms.                                                                       |    |     |  |
|                                                                                                        | OR                                                                                                                                            | 10 | CO5 |  |
|                                                                                                        | Apply Maclaurin's theorem on $f(x) = (1 + x)^4$ to deduce that                                                                                |    |     |  |
|                                                                                                        | $(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4.$                                                                                                       |    |     |  |
| Q11(b)                                                                                                 | State and proof Euler's theorem of two variables                                                                                              |    |     |  |
|                                                                                                        | OR                                                                                                                                            | 10 | CO6 |  |
|                                                                                                        | If $u = x^y$ , then show that $u_{xy} = u_{yx}$ .                                                                                             |    |     |  |