Name: Enrolment No:			
Course Progra Course Instru 1) 2)	UPES End Semester Examination, May 2023 Calculus B. Sc. (Physics, Chemistry, Geology) Code: MATH 1033G ns: Read all the below-mentioned instructions carefully and follow the ention Roll No. at the top of the question paper. TTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONL	nester: ne: 03 h x. Mark rictly:	
SECTION A All questions are compulsory		(5Qx4M=20Marks)	
S. No.		Marks	CO
Q1	Calculate $\lim _{x \rightarrow 2}\left(4-\frac{3}{2} x\right)$ using ϵ and δ definition of limit.	04	CO1
Q2	Apply Leibniz's theorem to prove $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$ when $y=\mathrm{a} \cos (\log x)+b \sin (\log x)$.	04	CO2
Q3	Evaluate the equation of tangent and normal to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(a \sec \theta, b \tan \theta)$.	04	CO3
Q4	Analyze the symmetry, origin and point of intersection for the curve $y^{2}(2 a-x)=x^{3}$.	04	CO4
Q5	Apply mean value theorem to show that $\sin x>x-\frac{1}{6} x^{3}, \text { if } 0<x<\frac{\pi}{2}$	04	CO6
SECTION B All questions are compulsory, and Question 9 has an internal choice (4Qx10M= 40 Mark			
Q6	Classify the asymptotes of the curve: $y^{3}-x^{2} y-2 x y^{2}+2 x^{3}-7 x y+3 y^{2}+2 x^{2}+2 x+2 y+1=0 .$	10	CO 3

Q7	Trace the curve $x=a \cos ^{3} t, y=b \sin ^{3} t$.	10	$\mathrm{CO4}$
Q8	Calculate the extrema of the function $f(x, y)=4 x^{2}+4 y^{2}+x^{3} y+y x^{3}-x y-4$ and the saddle points.	10	$\mathrm{CO5}$
Q9	Apply Euler's theorem to prove $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+\frac{1}{2} \cot u=0$ when $u=\cos ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$. OR Evaluate $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ when $u=\frac{x^{2} y^{2}}{x+y}$, and hence deduce that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=6 u$	10	CO6
SECTION-C All questions are compulsory, and questions 11(a) and 11(b) have internal choices (2Qx20M=40 Marks)			
Q10(a)	Estimate the length of tangent, subtangent, normal and subnormal to the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.	10	$\mathrm{CO3}$
Q10(b)	Discuss the function $f(x)=x^{4}-4 x^{3}$ with respect to increasing and decreasing nature, concavity, point of inflection.	10	$\mathrm{CO4}$
Q11(a)	Write Taylor's formula for the function $f(x)=\log (1+x),-1<x<$ ∞ about $x=2$ with Lagrange's form of remainder after 3 terms. OR Apply Maclaurin's theorem on $f(x)=(1+x)^{4}$ to deduce that $(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+x^{4}$.	10	CO5
Q11(b)	State and proof Euler's theorem of two variables OR If $u=x^{y}$, then show that $u_{x y}=u_{y x}$.	10	CO6

