Name:

**Enrolment No:** 

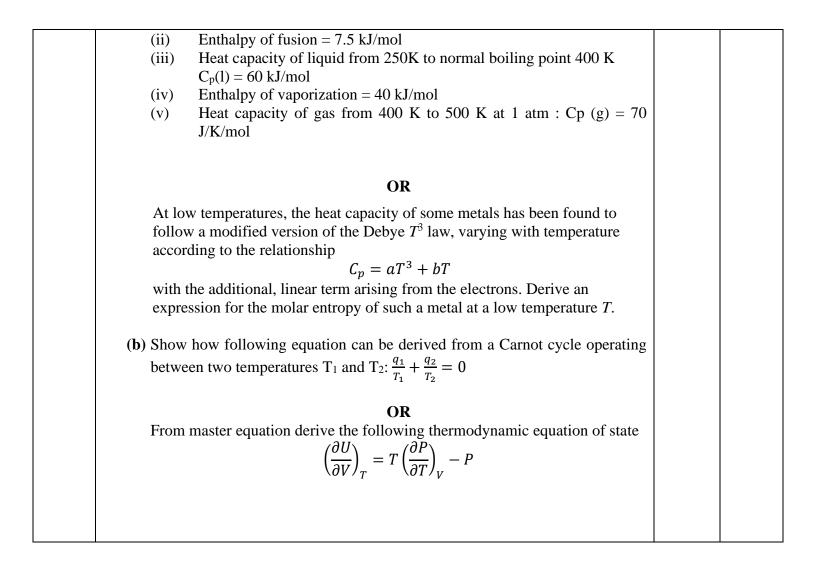
## **UPES**

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## End Semester Examination, May 2023

Programme Name: B. Sc. (Hons.) Chemistry

Course Name : Physical Chemistry-II Course Code : CHEM 1006 Semester : II Time : 03 hrs Max. Marks : 100


Nos. of page(s) : 3

## Instructions: Read all the below mentioned instructions carefully and follow them strictly

- 1) Write your name and enrollment no. at the top of the question paper.
- 2) Do not write anything else on the question paper except your name and roll number.
- 3) Attempt all the parts of a question at one place only.
- 4) Internal choices are given for question number 9 and 11.
- 5) CO1, CO2, CO3 & CO4 in the last column stand for course outcomes and are for official use only.

|        | SECTION A<br>(Attempt all Five Questions) (5Qx4M=20Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| S. No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks    | CO  |
| Q 1    | Define partial molar properties. Explain with an example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        | CO1 |
| Q 2    | Suppose we know that $\Delta G^0 = +3.40 \text{ kJ/mol}$ for the reaction<br>H <sub>2</sub> (g) + I <sub>2</sub> (s) $\rightarrow$ 2HI(g) at 25°C, then calculate the equilibrium constant. (Given: R = 8.314 J/K/mol)                                                                                                                                                                                                                                                                                                                   | 4        | CO3 |
| Q 3    | What are colligative properties? Give examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4        | CO1 |
| Q 4    | Draw the P-V diagram for Carnot cycle. What will be the efficiency of a Carnot's engine, considering the temperature of the source as $T_1$ and the temperature of the sink as $T_2$ ?                                                                                                                                                                                                                                                                                                                                                   | 4        | CO2 |
| Q 5    | The standard heats of formation of C <sub>2</sub> H <sub>5</sub> OH(l), CO <sub>2</sub> (g) and H <sub>2</sub> O(l) are -277.0, -393.5<br>and -285.5 kJ mol <sup>-1</sup> respectively. Calculate the standard heat change for the reaction<br>$C_2H_5OH(l) + 3O_2(l) \rightarrow 2CO_2(g) + 3H_2O(l)$                                                                                                                                                                                                                                   | 4        | CO3 |
|        | SECTION B<br>(Attempt all Questions; internal choice is given for question number 9) (4Qx10M= 4                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 Marks | )   |
| Q 6    | <ul> <li>(a) Determine the Gibbs Free energy (ΔG<sub>mix</sub>) and entropy (ΔS<sub>mix</sub>) of mixing for the formation of an equimolar mixture of two perfect gases (1.2 moles of N<sub>2</sub> and 1.2 moles of O<sub>2</sub>) at a temperature of 298 K.</li> <li>(b) Calculate the standard molar entropy of vaporization of phosphorus trichloride, PCl<sub>3</sub>, at its boiling temperature, 74°C, given that the standard molar enthalpy of vaporization of phosphorus trichloride is 30.5 kJ mole<sup>-1</sup>.</li> </ul> | 6+4      | CO2 |
| Q 7    | (a) What are the criteria of spontaneity in terms of Gibbs Free energy and                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5+5      | CO2 |

| Q 8  | <ul> <li>Helmholtz Free energy?</li> <li>(b) Check whether the following reaction is spontaneous at 25°C and 11000 °C C(s) + H<sub>2</sub>O(l) → CO (s) + H<sub>2</sub> (g)Given that ΔH and ΔS are 31400 Cal/mol and 32 Cal/deg at 25 °C.</li> <li>(a) The vapour pressure of pure CCl<sub>4</sub> (m.w. 154 g/mole) and SnCl<sub>4</sub> (m. w. 170 g/mole) at 25°C are 114.9 and 238.3 torr, respectively. Assuming ideal behavior, calculate the total vapour pressure of solution containing 15 gm of CCl<sub>4</sub> and 10 gm of SnCl<sub>4</sub>.</li> </ul>                                                                                                                  | 10        | CO2 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
|      | (b) Calculate the enthalpy of reaction for $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ at 450 K using the following crude guesses for the heat capacities: $C_P(N_2) = 3.5 R$ , $C_P(H_2) = 3.5 R$ , $C_P(NH_3) = 4R$ . It is known that $\Delta H_f^0(NH_3(g), 298 \text{ K}) = -45.72 \text{ kJ/mol.}$                                                                                                                                                                                                                                                                                                                                                                                  |           |     |
| Q 9  | <ul> <li>(a) Prove that [∂(ΔG/T)/∂T]<sub>p</sub> = -ΔH/T<sup>2</sup></li> <li>OR</li> <li>Derive the expression of entropy change (ΔS<sub>mix</sub>) for mixing of two ideal gases.</li> <li>(b) With reference to the formation of nitric oxide (NO), discuss the effect of change of concentration and temperature on chemical equilibrium, according to Le Chatelier principle.         <ul> <li>1/2 N<sub>2(g)</sub> + 1/2 O<sub>2</sub> Catalyst NO , ΔH= 90.75 kJ</li> <li>OR</li> <li>Derive the expression for ΔS<sub>syst</sub>, ΔS<sub>surr</sub> and ΔS<sub>total</sub> for expansion or compression of an ideal gas under the following circumstances</li></ul></li></ul> | 5+5       | CO3 |
|      | SECTION-C<br>(Attempt all Questions; internal choice is given for question number 11) (2Qx20M=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -40 Marka |     |
| Q10  | <ul> <li>(a) Derive all the four Maxwell's relations. Using Maxwell's square write all criteria of spontaneity.</li> <li>(b) Derive the thermodynamic expression of boiling point elevation of a solution ΔT<sub>b</sub>=T-T*=K<sub>b</sub>x<sub>B</sub> where K<sub>b</sub> is the boiling point elevation constant and x<sub>B</sub> is the mole fraction of solute B.</li> </ul>                                                                                                                                                                                                                                                                                                   | 8+12      | CO3 |
| Q 11 | <ul> <li>(a) State 3<sup>rd</sup> law of thermodynamics.<br/>Calculate the third law entropy of a substance at 500 K using the following data         <ul> <li>(i) Heat capacity (J/K/mol) of solid from 0 K to normal melting point 250 K:<br/>Cp (s) = 0.05T</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 | 10+10     | CO3 |

